• Title/Summary/Keyword: Designed in 3D

Search Result 4,309, Processing Time 0.037 seconds

A method for mandibular dental arch superimposition using 3D cone beam CT and orthodontic 3D digital model

  • Park, Tae-Joon;Lee, Sang-Hyun;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.42 no.4
    • /
    • pp.169-181
    • /
    • 2012
  • Objective: The purpose of this study was to develop superimposition method on the lower arch using 3-dimensional (3D) cone beam computed tomography (CBCT) images and orthodontic 3D digital modeling. Methods: Integrated 3D CBCT images were acquired by substituting the dental portion of 3D CBCT images with precise dental images of an orthodontic 3D digital model. Images were acquired before and after treatment. For the superimposition, 2 superimposition methods were designed. Surface superimposition was based on the basal bone structure of the mandible by surface-to-surface matching (best-fit method). Plane superimposition was based on anatomical structures (mental and lingual foramen). For the evaluation, 10 landmarks including teeth and anatomic structures were assigned, and 30 times of superimpositions and measurements were performed to determine the more reproducible and reliable method. Results: All landmarks demonstrated that the surface superimposition method produced relatively more consistent coordinate values. The mean distances of measured landmarks values from the means were statistically significantly lower with the surface superimpositions method. Conclusions: Between the 2 superimposition methods designed for the evaluation of 3D changes in the lower arch, surface superimposition was the simpler, more reproducible, reliable method.

Optimum Design and Characterization of F-Theta Lens by a 3D Printer(I) (초점보정 렌즈설계 및 3D 프린터 이용 가공 특성평가(I))

  • Shin, Hyun-Myung;Yoon, Sung-Chul;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • A focal length-correcting lens called the F-theta lens is required to compensate for the different focus on spot size due to the deflected incident laser beam. The F-theta lens was designed by the ray tracing method and fabricated by a 3D printer with polymer-based material. The designed F-theta lens is able to compensate for the focus on spot size by an incidence angle of 0 to 2 degrees. Based on the analysis of the simulation, there was almost no aberration in the $0^{\circ}C$ incidence angle, and the maximum of $50{\mu}m$ of aberration was observed at the incidence angle of $2^{\circ}$. Diffraction-encircled energy was analyzed to characterize the designed optics, and an image simulation was performed to confirm the actual image resolution.

A Design of a Verification System for a 3D Graphic Geometry Engine (3D 그래픽 가속기를 위한 검증시스템의 설계 및 구현)

  • Song, In-Seok;Ha, Jin-Seok;Kim, Myung-Hwan;Lee, Kwang-Yeob;Jo, Tae-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.663-666
    • /
    • 2005
  • The geometry stage, which performs the transformation and lighting operations of vertices, became the critical part in 3D graphics pipeline. In this paper, we have planned and designed the Geometry Processor for the better and more efficient way to process the real-time 3D using the floating point unit. We also designed a verification system for Geometry engine. It is implemented with Xilinx-Virtex2 and Visual C++.NET. In the Synopsis, we confirmed 100 MHz performance and 137107 cell area of Geometry Engine.

  • PDF

Application Two-Dimensional Pattern Development of Cycling Tights based on the Three-Dimensional Body Scan Data of High School Male Cyclist

  • Park, Hyunjeong;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.595-606
    • /
    • 2020
  • This study develops an optimal two-dimensional (2D) pattern from three-dimensional human scan data by considering the cycling posture and dermatome of high school male cyclists. By analyzing the body surface change in the cycling posture and considering the dermatome of the lower limbs, the optimal cutting line setting and the development of cycling tights for individual cyclists were presented to provide data that could be used in the clothing industry. We designed three cycling tights to solve the size unsuitability. 3D design 1 is a non-extension design based on the analysis of the 3D human body scan data, in which parts were connected diagonally from the front of the knee to the back of the knee. 3D design 2 removed both the front and back to reduce air resistance during cycling. 3D design 3 did not have a cutting line on the front panel because of the air resistance during cycling in the front area. We analyzed the garment pressure for 8 points of lower body and performed a subjective evaluation of the 3D designed tights and the current cycling tights. The 3D design 1 in this study was well received in the omphalion, thigh, and hip area, while 3D design 3 was well received in the omphalion, thigh, hip, and bottom bands. Therefore, the LoNE of 3D design 1 was applied to the front, and the hip cutting line of 3D design 3 was applied to the back.

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.

Longitudinal Shunt Slot Array Antenna in the Broad Wall of Waveguide for Millimeter-Wave(Ka-Band) Seeker (밀리미터파 탐색기용 도파관 광벽 종방향 슬롯 배열 안테나)

  • Park, Jung-Yong;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • In this paper, the design and fabrication of slot array in the broad wall of the waveguide for Ka-band monopulse radar are discussed. The aperture distributions are designed for the desired antenna gain, beamwidth and Side-lobe Level(SLL), and then slot parameters, such as lengths and offsets, are obtained for corresponding to each slot admittance in the equivalent circuit by using Elliot's array synthesis procedure. MWS-CST simulation shows the return loss below -10 dB, antenna gain above 32 dBi, 3 dB beamwidth of 3.7 degree and SLL of -20 dB. In order to demonstrate the expected results, the designed antenna is fabricated and measured.

Design and Fabrication of SMD Type Backward Wave 3dB Coupler for PCS Basestation (PCS 기지국용 표면실장형 후진파 3dB 커플러의 설계 및 제작)

  • 박인식;김종규;신동호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.1-7
    • /
    • 1998
  • In this paper, SMD type backward wave 3dB coupler for PCS basestation application was designed, fabricated and measured. We designed that it could be replaced for commercial basestation system and it was 0.56 $\times$ 0.35 inches size. The test results show that coupler is well operated within frequency range of 1.75 ~ 1.98GHz, which is defined on PCS system. The coupler reveals insertion loss 0.295dB, isolation -30.31dB, amplitude balance 0.05dB, phase balance 0.02$^{\circ}$, input and output impedance matching -30.38dB, -39.72dB, respectively.

  • PDF

Implementation of 3D Virtual Space Documents using Image Information in Real Time (실시간으로 영상 정보을 이용한 3D 가상공간 문서의 디스플레이 구현)

  • Cheong, Ha-Young;Kim, Tae-Woo;Choi, Chong-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • As the information society developed rapidly now, office software based on IoT has released along with office appliances that we encountered in everyday life, providing more convenient services. Now a days, in addition to writing documents for recording, it has importance to create documents for effective document presentation and information transmission. In this paper, we have been presented and designed in 3D virtual space from 2D for effective information transmission in real time. The suggested program, which implements part of the design, enables the voice and visual information to be effectively communicated while conveniently exploring or showing documents in a virtual 3D space. It provides a method of automatically placing documents in 3D virtual space, designing virtual camera movements that effectively explore them, and suggesting how to connect voice information to each document in real time.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.

Designed and Implementation of Flash Game Interface based on PC Games (PC게임에서의 플래시 기반 게임 인터페이스 설계 및 구현)

  • Mun, Sung-Won;Han, Sung-Ho;Cho, Hyung-Je
    • Journal of Korea Game Society
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 2009
  • In the recent development of 3D game, the importance of the game interface as well as the amusement and performance of the game is highlighted. Considering the fact that the flash can easily express the various multimedia contents will provide new possibilities and improve the presentation of game interfaces, the system using the flash in 3D PC game interface was designed and tested in this paper.

  • PDF