• Title/Summary/Keyword: Design wind speed

Search Result 645, Processing Time 0.03 seconds

An Improvement in Idle Sound Quality of a V8 engine (V8 엔진을 탑재한 차량의 아이들링 시의 음질 개선)

  • Suh, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.193-198
    • /
    • 2004
  • In order to keep the market competitiveness, it is desirable for automotive manufacturer to meet the customer's various aspects of requirements. The overall NVH (Noise, Vibration, and Harshness) performance has been an important measure when evaluating overall vehicle performance, product quality, and enhancing customers' loyalty to the product. The noise and vibration, while the engine is idling, has been brought particular attention to the drivers and passengers, because they encounter the operation conditions quite frequently without other masking noise sources: wind noise, road noise, and even powertrain radiated noise at higher speed driving. The specific noise, defined as 'CHIT' noise, has been identified as a potential customer issue, from the Pickup Truck with newly developed V8 powertrain. This paper describes the definition of the noise, identifying the potential sources, and noise radiation mechanisms, based on series of powertrain and vehicle test and verification processes. Then, based on the root-cause identified, the design change has been proposed and validated with several vehicles in order to have a complete satisfaction of the customer.

  • PDF

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Correlation Analysis of Atmospheric Pollutants and Meteorological Factors Based on Environmental Big Data

  • Chao, Chen;Min, Byung-Won
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • With the acceleration of urbanization and industrialization, air pollution has become increasingly serious, and the pollution control situation is not optimistic. Climate change has become a major global challenge faced by mankind. To actively respond to climate change, China has proposed carbon peak and carbon neutral goals. However, atmospheric pollutants and meteorological factors that affect air quality are complex and changeable, and the complex relationship and correlation between them must be further clarified. This paper uses China's 2013-2018 high-resolution air pollution reanalysis open data set, as well as statistical methods of the Pearson Correlation Coefficient (PCC) to calculate and visualize the design and analysis of environmental monitoring big data, which is intuitive and it quickly demonstrated the correlation between pollutants and meteorological factors in the temporal and spatial sequence, and provided convenience for environmental management departments to use air quality routine monitoring data to enable dynamic decision-making, and promote global climate governance. The experimental results show that, apart from ozone, which is negatively correlated, the other pollutants are positively correlated; meteorological factors have a greater impact on pollutants, temperature and pollutants are negatively correlated, air pressure is positively correlated, and the correlation between humidity is insignificant. The wind speed has a significant negative correlation with the six pollutants, which has a greater impact on the diffusion of pollutants.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM2.5, Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

  • Kwon, Jaymin;Weisel, Clifford P.;Morandi, Maria T.;Stock, Thomas H.;Turpin, Barbara
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1349-1368
    • /
    • 2016
  • Concentrations of fine particulate matter ($PM_{2.5}$) and several of its particle constituents measured outside homes in Houston, Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile sources and meteorological factors as the independent variables. $PM_{2.5}$ mass and the concentrations of organic carbon (OC), elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC model in Houston. Area source proximity was not selected for any of the $PM_{2.5}$ constituents' regression models. When the median values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the models for the eleven $PM_{2.5}$ constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the concentrations of the $PM_{2.5}$ constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that localized sources need to be evaluated carefully to understand their potential contributions to $PM_{2.5}$ mass and its particle constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.

A study on the characteristics of Vibration Reduction Type Disk bearing in Station of Rapid Transit Railway (역사 내 진동저감형 디스크 받침 특성에 관한 연구)

  • Park, Tae-Hyun;Park, Hean-Sang;Kim, Ho-Bae;Choi, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.297-302
    • /
    • 2011
  • Railway construction in the random vibration natural phenomena, as well as a relatively regular train loads for dynamic loads, such as a usability and safety should be ensured. Vibration due to train loads and seismic vibrations caused by wind compared to the typically very small in size, rather than the safety of the structure affects the usability. Recently in the downtown area, ground and underground facilities, such as a permanent facility that may cause excessive vibration increases, associated with the construction of these transportation facilities on ground vibrations of structures has been increasing concern and complaint. More recently, high-speed train vibration and noise due to furnace is increasing. In order to solve this problem, such as soundproof considering several feet, but by applying the vibration and noise reduction measures insufficient for the study is Free. In this study, track structure, track, and the inside of the building to support the system, the different forms of neurological history and share about the history cheonanahsan high-speed rail, if passed by the bus stop on the train loads of noise, and the history of interior noise and vibration measurement / analysis of measurement results to assess the relative comparison with the relevant provisions were reviewed. Based on this history, future plans for the design of the bridge to reflect the results of a study is intended to provide information. Waiting for the analysis of vibration and noise reduction, cheonanahsan history passed quietly in the train, on average, appeared to 67.53dB and 65.41dB nervous week on average, were measured with the history. Nervous week waiting room of history and the history cheonanahsan radically different shapes and sizes, so a direct comparison is impossible, but the vibration caused by the disc on the base of the polyurethane elastomer disk is not supported by GERB SYSTEM Waiting more effective in reducing the noise level considered in The main materials for railway and for the localization will help to ensure affordability is considered.

  • PDF

Optimal Design of a Fine Actuator for Optical Pick-up (광픽업 미세구동부의 최적설계)

  • Lee, Moon-G;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.819-827
    • /
    • 1997
  • In this paper, a new modeling of a fine actuator for an optical pick-up has been proposed and multiobjective optimization of the actuator has been performed. The fine actuator is constituted of the bobbin which is supported by wire suspension, the coils which wind around the bobbin, and the magnets which cause the magnetic flux. If current flows in the coils, magnetic force is so produced as to be balanced with spring force of wire, so the bobbin is pisitioned. In this model the transfer function from input voltage to output displacementof bobbin has been obtained so that we can describe this integrated system with electromagnetic and mechanical parts. Wire suspension is regarded as a continuous Euler beam, damper as distributed viscous damping, and bobbin as a rigid body which can move up- and down- ward motion only. According to the model, the high frequency dynamic characteristics of the fine actuator can be known and the effect of damping can be investigated while the conventional second order model cannot. In multiobjective optimization, two objective functions have been chosen to maximize the fundamental frequency and the sensitivity with respect to the input voltage of the actuator so that Pareto's optimal solutions have been obtained using .epsilon.-constraint method. These objective functions will satisfy the trends which will enhance the access speed and reduce the tracking error in the optical pick-up technology of next generation. In the result of optimization, we obtain the designs of the optical pick-up fine actuator which has high speed, high sensitivity and low resonant peak. Furthermore, we offer the relation between two object functions so that the designer can make easy choice.

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.