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Abstract

Concentrations of fine particulate matter (PM2.5) and several of its particle constituents measured outside homes in Houston, 
Texas, and Los Angeles, California, were characterized using multiple regression analysis with proximity to point and mobile 
sources and meteorological factors as the independent variables. PM2.5 mass and the concentrations of organic carbon (OC), 
elemental carbon (EC), benzo-[a]-pyrene (BaP), perylene (Per), benzo-[g,h,i]-perylene (BghiP), and coronene (Cor) were 
examined. Negative associations of wind speed with concentrations demonstrated the effect of dilution by high wind speed. 
Atmospheric stability increase was associated with concentration increase. Petrochemical source proximity was included in the EC 
model in Houston. Area source proximity was not selected for any of the PM2.5 constituents' regression models. When the median 
values of the meteorological factors were used and the proximity to sources varied, the air concentrations calculated using the 
models for the eleven PM2.5 constituents outside the homes closest to influential highways were 1.5-15.8 fold higher than those 
outside homes furthest from the highway emission sources. When the median distance to the sources was used in the models, the 
concentrations of the PM2.5 constituents varied 2 to 82 fold, as the meteorological conditions varied over the observed range. We 
found different relationships between the two urban areas, illustrating the unique nature of urban sources and suggesting that 
localized sources need to be evaluated carefully to understand their potential contributions to PM2.5 mass and its particle 
constituents concentrations near residences, which influence baseline indoor air concentrations and personal exposures. The results 
of this study could assist in the appropriate design of monitoring networks for community-level sampling and help improve the 
accuracy of exposure models linking emission sources with estimated pollutant concentrations at the residential level.
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1. Introduction 

Carbonaceous species are a major contributor to 

atmospheric fine particulate matter with an 

aerodynamic diameter of 2.5 μm or smaller (PM2.5). 

These species can be categorized as organic carbon 

(OC) and elemental carbon (EC). EC and polycyclic 

aromatic hydrocarbons (PAHs), a component of OC, are 

generated as incomplete combustion byproducts from 

anthropogenic sources including fossil fuel used in 

power generation, heating, transportation, and industrial 

processes (Kelly and Fussell, 2012; Noth et al., 2011). 

OC is also formed in the atmosphere locally and 

regionally through gas and multiphase photochemical 

reactions, as are the other major inorganic PM2.5 

constituents, sulfate and nitrate (Kanakidou et al., 

2005; Turpin et al., 2000). 

Adverse health outcomes have been reported for 

several endpoints in numerous studies documenting an 

association between exposure to particulate matter 

constituents and cardiovascular and respiratory effects, 

birth outcomes, and premature death by differential 

toxicity (Kelly and Fussell, 2012; Rohr and Wyzga, 

2012). For example, ambient air pollution was 

positively associated with increased asthmatic 

emergency hospitalization of senior citizens (Park et 

al., 2013). A cohort panel study found positive 

association of gene expression changes in senior 

citizens with exposure to traffic related air pollutants 

including EC, OC, and p-PAHs measured in the 

immediate outdoor environment near retirement 

communities in Los Angeles (Wittkopp et al., 2016). 

Exposure to PAHs has been linked to specific adverse 

outcomes especially in children, including asthma 

symptoms (Gale et al., 2012), regulatory T-cell 

function in asthma (Nadeau et al., 2010), intelligent 

quotient (IQ) development following prenatal 

exposure (Perera et al., 2009), preterm birth (Padula et 

al., 2014), and impaired systemic immunity and 

epigenetic modifications in atopy (Hew et al., 2015).

Health risk assessments of PM2.5 and its constituents 

are hampered by exposure measurement error. 

Frequently, air pollution measured at central monitoring 

sites is used as a surrogate for community-level air 

pollution exposure, and measurements of PM2.5 

chemical composition are limited. Capturing spatial 

variability for individual PM2.5 constituents is 

necessary step toward accurate assessment of PM2.5 

exposure at the community level because intra-urban 

spatial variability can vary greatly for some PM2.5 

constituents (Anastasopoulos et al., 2012; Noth et al., 

2011). 

In previous Relationship of Indoor, Outdoor and 

Personal Air (RIOPA) studies, the majority of indoor 

EC and particle phase PAH concentrations inside 

RIOPA homes in Houston, Texas, Los Angeles, 

California, and Elizabeth, New Jersey, were found to 

be of outdoor origin (Hodas et al., 2012; Naumova et 

al., 2002; Polidori et al., 2006). Significant enhancement 

of multiple PM2.5 constituents were observed indoor of 

near-highway homes in urban areas (Fuller et al., 2013; 

Lawson et al., 2011), and near ambient truck emissions 

(Baxter et al., 2008). Indoor levels of EC and PAHs 

were strongly affected by outdoor levels in a Los 

Angeles senior citizen panel study (Hasheminassab et 

al., 2014). 

An increase of outdoor concentrations of PM2.5 

constituents at homes located near emission sources is 

expected to result in an increase of indoor PM2.5 

constituent concentrations via penetration and would 

be expected to result in a consequent increase in 

personal exposure for populations living near the 

emission sources (Larson et al., 2004). Characterization 

of the impact of mobile, area, and point emission 

sources on residential outdoor concentrations (Kwon et 

al., 2006; Kwon et al., 2016; Polidori et al., 2010) can 

provide useful information for understanding the 

contribution of local outdoor sources of VOCs, PM2.5, 

OC, EC, and PAHs to indoor concentrations and to 

personal exposure levels, particularly for those who 
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Houston    N Mean Std. Dev.
Percentiles

Max
25 50 75

PM2.5 (µg/m3) 110 14.73 5.75 10.68 13.25 17.65 34.00

OC (µg/m3)*   63 3.37 3.16 1.29 2.54 4.67 18.25

EC (µg/m3)*   63 0.70 0.35 0.44 0.65 0.89 2.00

BaP (ng/m3)   41 0.058 0.067 0.008 0.027 0.099 0.292

Per (ng/m3)   38 0.012 0.012 0.003 0.009 0.024 0.038

BghiP (ng/m3)   41 0.167 0.313 0.036 0.072 0.181 1.927

Cor (ng/m3)   41 0.124 0.186 0.024 0.045 0.117 0.958

Los Angeles    N Mean Std. Dev.
Percentiles 

Max
25 50 75

PM2.5 (µg/m3) 101 19.23 13.26 12.00 16.10 22.60 94.90

OC (µg/m3)*   45 4.05 1.92 2.59 3.59 5.42 10.06

EC (µg/m3)*   45 1.40 0.90 0.74 1.14 1.82 4.64

BaP (ng/m3)   53 0.109 0.175 0.022 0.048 0.114 1.046

Per (ng/m3)   53 0.023 0.036 0.003 0.010 0.026 0.212

BghiP (ng/m3)   53 0.481 0.626 0.114 0.270 0.542 3.123

Cor (ng/m3)   53 0.520 0.840 0.060 0.246 0.595 4.684

*μg of carbon/m3 0

Table 1. Outdoor concentrations of the chemical species examined in this study 

spend most of their time at home, such as infants, 

toddlers, children, home-bound patients, and senior 

citizens, especially for those who live near emission 

sources. The general approach to proximity, 

meteorology, and statistical analysis applied in 

previous studies (Kwon et al., 2006; Kwon et al., 2016; 

Polidori et al., 2010) were also applied to the current 

Houston and Los Angeles data. 

This study was directed at identifying determinants 

(i.e., meteorological and source factors) of elevated 

concentrations of PM2.5 constituents at urban residences 

in close proximity to sources. The objective of study is 

to construct statistical models that explain residential 

outdoor concentrations for distinctively different major 

urban areas in two states, Houston TX and Los Angeles 

County CA, and to compare them with those 

constructed previously for Elizabeth, NJ (Polidori et 

al., 2010). Understanding determinants of the spatial 

distribution of PM2.5, OC, EC, and particle-bound 

PAHs in urban settings can assist exposure and risk 

assessment, and epidemiology research.  

2. Materials and Methods

2.1. Data sources 

As part of the RIOPA study, 48-hour integrated 

samples of air pollutants were collected in Houston, 

TX, Los Angeles, CA, and Elizabeth, NJ, during 

different seasons between the summer of 1999 and the 

spring of 2001 (Weisel et al., 2005). Homes near 

outdoor emissions were oversampled based on 

residential distances from various mobile, area, and 

point emission sources in order to estimate their 

contributions to residential outdoor and indoor air and 

to personal exposures (Weisel et al., 2005). The 

RIOPA study design, measurement of air pollutants, 

and quality assurance and control results are described 

elsewhere (Turpin et al., 2007; Weisel et al., 2005). 

The RIOPA database is publicly available at 

https://riopa. aer.com/login.php. The current analysis 

evaluated PM2.5, OC, EC, and four particle-bound 

PAHs (p-PAHs) to examine the influence of proximity 

to emission sources and local meteorological factors on 
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Description Mean Std. Deviation Minimum 25th Percentile Median 75th Percentile Maximum

Houston, TX

Temperature, °C 22.2 7.5 4.7 15.9 24.7 28.4 32.5

RH, % 73.9 12.3 39.1 65.9 75.0 82.8 103.9

Atmospheric Stability, time fraction 0.58 0.15 0.06 0.50 0.58 0.67 0.94

Dewpoint Temperature, °C 16.5 7.2 -2.0 9.7 19.8 22.4 24.4

Wind speed, m/s 3.54 1.10 1.63 2.62 3.39 4.26 6.29

Atmospheric pressure, inHg 29.97 0.14 29.65 29.87 29.96 30.04 30.42

Precipitation total 0.006 0.011 0.000 0.000 0.000 0.004 0.060

Los Angeles, CA

Temperature, °C 18.1 3.9 10.0 15.1 18.3 21.3 26.0

RH, % 67.6 13.6 27.9 63.9 71.2 77.2 87.3

Atmospheric Stability, time fraction 0.71 0.14 0.44 0.61 0.67 0.83 1.00

Dewpoint Temperature, °C 11.1 6.0 -4.8 7.9 13.3 15.6 18.4

Wind speed, m/s 1.16 0.39 0.26 0.85 1.20     1.44 2.26

Atmospheric pressure, inHg 29.78 0.11 29.55 29.70 29.76 29.87 30.04

Precipitation total 0.002 0.009 0.000 0.000 0.000 0.000 0.081

Table 2. Distribution of the meteorological data during sample collection for the Houston Texas and Los Angeles California 
study 

the residential outdoor concentrations (Cout). The four 

p-PAHs included were: benzo-[a]-pyrene (BaP), 

perylene (Per), benzo-[g,h,i]-perylene (BghiP), and 

coronene (Cor). Other sampled p-PAHs were excluded 

due to too the high proportion of concentrations below 

method detection limits (MDLs). PM2.5 mass, OC, and 

EC concentrations were all above their respective 

MDLs. p-PAH concentrations below their respective 

MDLs were included as reported rather than replacing 

these values with one-half of the MDLs before natural 

log transformation for the data analysis (Turpin et al., 

2007). Descriptive statistics for the PM2.5, OC, EC, and 

the four selected p-PAHs concentrations in Houston 

and Los Angeles are shown in the Table 1.

2.2. Study area  

Houston has the largest density of petrochemical 

facilities in the world for the production and storage of 

fuels, chemical precursors, plastics, and solvents. The 

residential areas around the petrochemical complexes 

were targeted for recruitment included: Houston Ship 

Channel, Pasadena, Galena Park, Channelview, 

Baytown, Deer Park, La Porte and, as a comparison 

area, the Texas Medical Center (Weisel et al., 2005). 

There were four sampling areas in Los Angeles 

County: West Los Angeles, Pico Rivera, Burbank, and 

Santa Clarita. Los Angeles areas were influenced by 

emissions from at least one major highway (Weisel et 

al., 2005). Elizabeth is a city adjacent to a major 

petrochemical industrial complex in Linden, NJ, to its 

south, Newark International Airport and the port of 

Newark to its north. Residential areas are close to  

commercial areas and major highways (Weisel et al., 

2005). Maps of the three RIOPA study areas can be 

found in a previous study (Kwon et al., 2016).

2.3. Meteorological data 

To examine the influence of meteorological factors 

on residential outdoor PM2.5, OC, EC, and p-PAHs 

concentrations (Cout), temperature, dew-point temperature, 

relative humidity (RH), wind speed, atmospheric 

pressure, and precipitation data were downloaded from 

the RIOPA database (HEI and NUATRC, 2008) as 

candidate explanatory variables. Descriptive statistics 

for the meteorological variables by study location are 

summarized in Table 2. Computed atmospheric Pasquill 
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stability classes, with a time resolution of 3-h, were 

retrieved from the Air Resource Laboratory, National 

Oceanic and Atmospheric Administration (NOAA), 

real-time environmental applications and display 

(READY) system (NOAA, 2012). Each 3-hour 

atmospheric stability class was assigned a code of “1” 

if the Pasquill category was “stable” or “neutral” (i.e., 

classes D, E, F, and G), or “0” when it was “unstable” 

(i.e., classes A, B, and C) to derive the fraction of each 

48-hour sampling period with “stable” or “neutral” 

stability (Kwon et al., 2006). 

2.4. Emission sources

Emission sources of PM2.5 and its constituents 

around the homes were identified by geographical 

information system (GIS) mapping. Emission sources 

of interest were: 1) point sources listed in the National 

Emission Inventory for year 1999 (1999 NEI), i.e., 

refineries and solvent production facilities (USEPA, 

2003); and 2) mobile sources, i.e., highways and major 

arterial roadways identified from the 2000 TIGER 

(topologically integrated geographic encoding and 

referencing) line files obtained from the U.S. Census 

Bureau (USCB, 2012). To avoid redundant selections 

of the same roadways when the distances were 

measured from the RIOPA homes, line segments of a 

roadway that had the same feature class and street 

name were merged into a single segment. Area sources 

such as gas stations, scrap metal recyclers, and dry 

cleaning facilities used for a previous VOCs proximity 

study (Kwon et al., 2016) were tested for assuring these 

VOC sources are not significant contributors in the 

PM2.5 models. Detailed descriptions of the mapping 

processes of emission sources are provided in the 

previous work (Kwon et al., 2016). 

2.5. Proximity data  

The direct distances between sampling locations and 

emission sources were calculated using the ArcScript 

extension referred to as ”the nearest features” with 

distances and bearings (version 3.8b, Jenness Enterprises, 

Flagstaff, AZ) on ArcView 3.2 (ESRI Inc., Redland, 

CA). To obtain more generalized and consistent model 

outcomes, the proximity variables under the same 

category for each specific component were estimated 

as the sum of all distances (km) from the first to the 

fifth closest facilities or roadways in the same class 

(Kwon et al., 2016). This combined distance approach 

was developed to accommodate the wide distribution 

of every distance between surrounding emission 

clusters and the homes sampled. The inverse of the sum 

of distances (km-1) was used as the source proximity 

variable. The distributions of the proximity variables 

are shown in Table 3. 

2.6. Statistical analysis 

All statistical analyses were performed using SAS 

(version 9.3, SAS Institute Inc. Cary, NC), and SPSS 

(version 23, SPSS Inc. Chicago, IL). The PM2.5, OC, 

EC, and four p-PAHs concentrations were consistent 

with a log normal distribution; therefore natural-log 

transformed residential outdoor concentrations (lnCout) 

were used as the dependent variables. Bivariate 

Pearson’s correlations between the lnCout and 

proximity and meteorological variables were used to 

explore the correlations at α=0.05 (p<0.05). 

Multiple stepwise linear regression analysis was 

conducted to select a group of variables (Xi) to 

explain lnCout (Yi). The default entry and inclusion 

criteria were set at p<0.15. However, an entry 

criterion of p<0.10 was used for BghiP and Cor in 

Houston, and PM2.5 in Los Angeles to avoid model 

over-specification and problems related to potential 

co-linearity among the selected variables. Because 

of the logarithmic transformation, the additive 

effects of the independent variables on the 

regression model predictions become multiplicative. 

The regression equation can be written as: 
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Description Mean  Std. Deviation Minimum 25th Percentile Median 75th Percentile Maximum

Houston Texas 

Highway (A10, A20) 24.0 5.1 13.0 21.2 23.9 25.5 42.2

Arterial (A30) 9.6 5.3 2.0 5.5 8.6 16.0 23.8

PM2.5 9.6 5.4 1.8 5.3 7.8 11.4 26.2

POM (15-PAHs) 42.2 14.6 24.1 35.9 39.1 41.5 130.0

POM (7-PAHs) 53.8 16.3 38.8 43.8 51.5 53.4 136.2

POM (Non 15-PAHs) 60.8 19.5 41.6 46.2 58.4 62.6 139.3

petrochemical facilities 24.4 10.5 10.6 19.6 22.9 25.7 70.1

Los Angeles California        

Highway (A10, A20) 20.5 3.3 12.7 19.5 20.0 22.7 29.3

Arterial (A30) 18.8 7.0 3.2 16.7 19.6 20.8 31.8

POM (15-PAHs) 34.6 13.5 9.4 22.8 43.0 43.8 48.5

POM (7-PAHs) 34.7 13.4 9.4 22.8 43.0 44.0 48.9

POM (Non 15-PAHs) 152.0 72.9 102.6 108.1 110.8 165.0 302.0

Table 3. Distribution of the local, mobile, and point emission sources proximity variables (the sum of distance (km) to the 
closest five facilities or roadways from participated homes)

Couti = expβ0•exp β1Xi1•exp β2Xi2•exp βP-1Xi,P-1•expε

(1)

where Couti is residential outdoor concentration 

(µg/m³ for PM2.5, OC, EC, and ng/m³ for p-PAHs), 

β0, β1 … βP-1 are the regression coefficients, Xi1, 

Xi2 … Xi, P-1 are the selected variables, and ε is 

the error term (Kwon et al., 2016). 

To reduce Type I errors under multiple testing 

scenarios, preliminary regression analysis was 

performed for each compound to determine the relative 

importance of variables within the same type of 

independent variables, either proximity or meteorological 

variables separately. The best-fit models selected by 

the stepwise selection methods and the corresponding 

statistical results were evaluated for satisfying the 

major assumptions of linear regression analysis 

(Polidori et al., 2010). 

The effect of an individual variable (Xi) explaining 

the variability of residential outdoor concentrations 

(Cout) in the multiple regression models are simulated 

by holding constant other variables in each model at 

their respective observed median values, similar to 

simulations performed in previous studies (Kwon et al., 

2006; Kwon et al., 2016; Polidori et al., 2010). To 

avoid misleading interpretations of model explanatory 

power, simulations of explanatory effects were limited 

to the PM2.5 constituents with adjusted model R2 larger 

than 0.25 and individual variables with p<0.05.

3. Results

3.1. Descriptive summary 

Bivariate Pearson’s correlations between the lnCout 

of PM2.5, OC, EC, p-PAHs and the meteorological 

and proximity parameters are presented in Table 4. 

Variables with statistically significant correlations at 

α=0.05 (p<0.05) are sorted in ascending order of 

the significance of p-values. Correlations between 

lnCout and proximity and meteorological variables 

were in the expected direction. Proximity variables, 

the inverse distances to emission sources, and 

atmospheric stability were positively correlated with 

the lnCout of PM2.5, EC, and p-PAHs concentrations. 

Wind speed, RH, and precipitation were negatively 



Source Proximity and Meteorological Effects on Residential Ambient Concentrations of PM2.5, 

Organic Carbon, Elemental Carbon, and p-PAHs in Houston and Los Angeles, USA

RIOPA TX Houston RIOPA CA Los Angeles

Pollutant Variable CC P N Pollutant Variable CC P N

LnPM2.5 LnPM2.5

U* -0.34 0.0002 110 Precip* -0.28 0.003 108

Precip* -0.31 0.001 110 Press -0.26 0.0069 108

RH* -0.31 0.001 110 Temp 0.24 0.0112 108

Stab 0.25 0.009 110 U* -0.22 0.0214 108

DewC* 0.21 0.0285 108

A125Inv* 0.19 0.0381 121

LnOC LnOC

DewC* -0.41 0.001 63 U* -0.45 0.0028 42

RH* -0.35 0.005 63 RH -0.38 0.0127 42

Temp -0.33 0.008 63

Press 0.32 0.010 63

LnEC LnEC

Petro5Inv* 0.41 0.001 63 A125Inv* 0.40 0.007 44

RH* -0.38 0.002 63 RH -0.38 0.0118 42

Stab* 0.36 0.004 63 DewC -0.34 0.0269 42

U* -0.35 0.005 63

Press 0.26 0.037 63

LnBaP LnBaP

DewC -0.39 0.011 41 Press 0.49 0.0003 49

Press 0.34 0.028 41 RH -0.48 0.0005 49

Temp -0.34 0.0169 49

LnPer LnPer

DewC* -0.52 0.001 38 DewC -0.47 0.0006 49

Temp -0.45 0.004 38 RH -0.46 0.0009 49

Press 0.40 0.012 38 Press 0.38 0.0069 49

RH -0.40 0.014 38

LnBghiP LnBghiP

DewC* -0.50 0.001 41 RH -0.49 0.0003 49

Temp -0.39 0.011 41 Press 0.48 0.0005 49

RH -0.37 0.019 41 Pn15_5inv 0.40 0.0028 53

Press 0.31 0.049 41 Temp -0.30 0.0369 49

LnCor LnCor

DewC* -0.47 0.002 41 DewC -0.50 0.0003 49

RH -0.41 0.008 41 RH -0.48 0.0004 49

Temp -0.34 0.032 41 Stab* 0.49 0.0004 47

Stab* 0.31 0.047 41 Press 0.43 0.0023 49

* Variables included in the model. U= wind speed (m/s), Temp= temperature °C, RH=relative humidity (%), DewC=dew point 
temperature °C, Press= atmospheric pressure (inHg), Precip= precipitation, Stab= fraction of time atmospheric stability was stable, 
A125inv= inverse distance to the closest 5 highways (A10, A20), Petro5inv= inverse distance to the closest 5 petrochemical point 
sources, Pn15_5inv= inverse distance to the closest 5 Non-15 PAHs point sources

Table 4. Bivariate Pearson's correlations between ln-transformed outdoor concentrations and variables for correlations with 
p<.05 (CC= Pearson’s coefficient of correlation; P= p-value; N=sample size)
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Pollutant Y Intercept X1st X2nd X3rd X4th X5th

Houston

PM2.5 lnPM β U1 PRECIP1 RH

Adjusted Model R2 = 0.24 βi 3.584 -0.061 -10.508 -0.007

Enter p< 0.150 Standard Error 0.212 0.016 3.338 0.003

Model d.f. 3 Partial R2 0.119 0.101 0.044

Model p-value <.0001 p-value 0.0002 0.0003 0.013

Organic Carbon lnOC β DEWC PRECIP RH STAB

Adjusted Model R2 = 0.28 βi 2.197 -0.058 29.414 -0.022 1.657

Enter p< 0.15 Standard Error 0.818 0.022 11.932 0.010 0.839

Model d.f. 4 Partial R2 0.170 0.059 0.051 0.045

Model p-value 0.0001 p-value 0.0008 0.036 0.046 0.053

Elemental Carbon lnEC β Petro5INV U1 RH STAB A125INV1

Adjusted Model R2 = 0.40 βi -0.640 6.805 -0.049 -0.012 1.010 10.604

Enter p< 0.15 Standard Error 0.559 2.593 0.032 0.004 0.442 5.649

Model d.f. 5 Partial R2 0.169 0.139 0.066 0.039 0.034

Model p-value <.00011 p-value 0.0008 0.001 0.015 0.056 0.066

Los Angeles

PM2.5 lnPM β PRECIP1 A305INV DEWC U1 A125INV

Adjusted Model R2 = 0.22 βi 2.319 -13.107 1.984 0.026 -0.178 8.420

Enter p< 0.10 Standard Error 0.257 5.659 0.753 0.009 0.067 4.021

Model d.f. 5 Partial R2 0.080 0.057 0.039 0.047 0.034

Model p-value <.0001 p-value 0.004 0.012 0.036 0.017 0.039

Organic Carbon lnOC β U A125INV

Adjusted Model R2 = 0.22 βi 1.268 -0.283 13.504

Enter p< 0.15 Standard Error 0.350 0.087 6.229

Model d.f. 2 Partial R2 0.168 0.099

Model p-value 0.0044 p-value 0.011 0.037

Elemental Carbon lnEC β A125INV1 U1

Adjusted Model R2 = 0.26 βi -0.530 27.604 -0.302

Enter p< 0.15 Standard Error 0.462 8.220 0.115

Model d.f. 2 Partial R2 0.162 0.138

Model p-value 0.002 p-value 0.012 0.013

1: Variable commonly selected in the specific models in Houston and Los Angeles. The variable is bold when the individual 
p-values are less than 0.01. The variable is italic when individual p-values are higher than 0.05

Table 5. The summary of the best-fit models of PM2.5, OC, EC of Houston and Los Angeles (Ln-transformed concentrations, 
μg/m3)
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Pollutant Y Intercept X1st X2nd X3rd

Houston

     Benzo(a)Pyrene lnBaP β RH PRECIP A125INV1

Adjusted Model R2 = 0.38 βi 0.191 -0.068 31.759 27.854

Enter p< 0.15 Standard Error 1.241 0.014 18.069 17.952

Model d.f. 3 Partial R2 0.337 0.049 0.038

Model p-value 0.0001 p-value <.0001 0.087 0.129

     Perylene lnPer β DEWC PRECIP

Adjusted Model R2 = 0.30 βi -3.067 -0.132 41.692

Enter p< 0.15 Standard Error 0.583 0.032 21.537

Model d.f. 2 Partial R2 0.271 0.071

Model p-value 0.0007 p-value 0.0002 0.061

     Benzo(ghi)Perylenee lnBghiP β DEWC STAB1 A125INV1

Adjusted Model R2 = 0.36 βi -3.847 -0.097 2.694 31.507

Enter p< 0.10 Standard Error 1.009 0.024 1.087 15.295

Model d.f. 3 Partial R2 0.247 0.091 0.068

Model p-value 0.0002 p-value 0.0009 0.028 0.047

     Coronene lnCor β DEWC STAB1 A125INV1

Adjusted Model R2 = 0.36 βi -4.514 -0.098 3.104 34.603

Enter p< 0.10 Standard Error 1.063 0.025 1.146 16.115

Model d.f. 3 Partial R2 0.225 0.109 0.074

Model p-value 0.0002 p-value 0.0018 0.017 0.038

Los Angeles

     Benzo(a)Pyrene lnBaP β STAB U A125INV1

Adjusted Model R2 = 0.50 βi -7.880 6.579 -0.545 31.142

Enter p< 0.15 Standard Error 1.865 1.604 0.261 16.787

Model d.f. 3 Partial R2 0.434 0.064 0.041

Model p-value <.0001 p-value <.0001 0.030 0.071

     Perylene lnPer β STAB U A125INV

Adjusted Model R2 = 0.43 βi -10.247 6.862 -0.809 49.599

Enter p< 0.15 Standard Error 2.588 2.226 0.363 23.295

Model d.f. 3 Partial R2 0.320 0.085 0.062

Model p-value <.0001 p-value <.0001 0.022 0.040

     Benzo(ghi)Perylene lnBghiP β U STAB1 A125INV1

Adjusted Model R2 = 0.49 βi -5.081 -0.670 4.892 37.589

Enter p< 0.15 Standard Error 1.758 0.246 1.513 15.827

Model d.f. 3 Partial R2 0.361 0.094 0.069

Model p-value <.0001 p-value <.0001 0.012 0.023

     Coronene lnCor β U A125INV1 STAB1

Adjusted Model R2 = 0.43 βi -6.098 -1.101 61.369 5.514

Enter p< 0.15 Standard Error 2.722 0.382 24.502 2.342

Model d.f. 3 Partial R2 0.343 0.056 0.075

Model p-value <.0001 p-value <.0001 0.062 0.024
1: Variable commonly selected in the specific models in Houston and Los Angeles. The variable is bold when the individual 

p-values are less than 0.01. The variable is italic when individual p-values are higher than 0.05

Table 6. The summary of the best-fit models of selected particle bound PAHs of Houston and Los Angeles (Ln-transformed 
concentrations, ng/m3)
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correlated with the lnCout of PM2.5, OC, EC, and 

p-PAHs. Temperature and dew point were negatively 

correlated with lnCout of PM2.5, OC, EC, and p-PAHs 

concentrations, except for PM2.5 in Los Angeles, 

which showed positive correlation with temperature 

and dew point. 

In all cases, the best-fitting multiple regression 

models were obtained through stepwise selection. 

Summaries of regression models for Houston and 

Los Angeles including adjusted R2, degrees of 

freedom, and p-values for the overall model, and 

partial R2 and p-values for individual variables are 

shown in Table 5 for PM2.5, OC, EC and in Table 

6 for the four p-PAHs. The variables included in 

the models are sorted by the order of selection 

(Xith). A variable enters the model based on the 

significance of its association with lnCout. Most of 

the predictors included in the models were the 

variables significantly correlated with lnCout (Table 

4). The F-statistics for all models and the p-values 

for all parameter estimates were statistically 

significant (p<0.001, Pmodel<F) except for OC and 

EC in Los Angeles (p=0.004 and 0.002, respectively). 

The p-values for parameter estimates of the first 

selected independent variables (X1st) were statistically 

significant. Based on the adjusted model R2, the 

models explained 24 to 40 % of the total variability 

of lnCout of PM2.5, OC, and EC in Houston, and 22 

to 26 % of the total variability of lnCout of PM2.5, 

OC, and EC in Los Angeles. Models explained 30 

to 38% of the total variability of lnCout of p-PAHs 

in Houston, and 43 to 50% of the total variability 

of lnCout of p-PAHs in Los Angeles. Although the 

models and individual variables were statistically 

significant, still a larger proportion (50~78%) of the 

Cout variability remains unexplained by these models.

3.2. Meteorological variables 

Wind speed was selected as a significant explanatory 

variable in models for PM2.5 and EC in Houston, and 

PM2.5, OC, EC, BaP, Per, BghiP, and Cor in Los 

Angeles. Wind speed entered as the X1st in four of the 

models: PM2.5 in Houston, OC, BghiP, and Cor in Los 

Angeles with partial R2s explaining 12, 17, 36, and 

34% of overall variability in residential outdoor 

concentrations respectively. Wind speed entered as the 

second variable selected in three models: EC in 

Houston, EC and Per in Los Angeles with partial R2s 

explaining 14, 14, and 9% of overall variability in 

residential outdoor concentrations respectively. Wind 

speed was included as a variable in all seven models in 

Los Angeles, while it was only included in PM2.5 and 

EC models in Houston. Wind speed was the most often 

variable selected among the meteorological variables. 

As expected, wind speed was inversely associated with 

the lnCout in all models where it was included. 

Atmospheric stability was selected as a variable for 

8 models: OC, EC, BghiP, and Cor in Houston, and for 

all four p-PAHs, BaP, Per, BghiP, and Cor in Los 

Angeles. Atmospheric stability was the first variable 

selected in 2 models: BaP and Per in Los Angeles with 

partial R2s explaining 43 and 32% of overall variability 

in residential outdoor concentrations respectively. 

Atmospheric stability was the second variable selected 

in 3 models: BghiP and Cor in Houston, and BghiP in 

Los Angeles with partial R2s explaining 9, 11, and 9% 

of overall variability in residential outdoor concent 

-rations respectively. The partial R2 of stability in the 

other 3 models in which it was selected as third and 

fourth variables explained 4 to 7% of overall variability 

in residential outdoor concentrations. Atmospheric 

stability was positively associated with the concent 

-rations. 

Dew point was included in models of OC, Per, 

BghiP, and Cor in Houston as the first variable selected 

with partial R2s explaining 17, 27, 25, and 23% of the 

overall variability in the residential outdoor concent 

-rations, respectively, and in the PM2.5 model in Los 

Angeles as the third variable selected with partial R2 

explaining 4% of overall variability in residential 
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Highway proximity (Close/Far) 
Houston Los Angeles

PM2.5   n.a.   1.46
OC   n.a.   1.84
EC 1.75   3.46
BaP 4.38   4.61
Per   n.a.   9.32
BghiP 5.31   5.43
Cor 6.26 15.83

Petrochemical point source proximity (Close/Far) 
Houston Los Angeles

EC 1.73   n.a.

n.a.: Not available because the proximity variable was not selected in the model

Table 7. The enhancement in close to far proximity for outdoor residential concentrations estimated from models using median 
values for other variables from dataset of each city

outdoor concentrations. Dew point temperature was 

associated negatively in all four Houston models, while 

it was associated positively with PM2.5 concentration of 

Los Angeles. 

RH was selected in four models in Houston: PM2.5, 

OC, EC, and BaP with partial R2s explaining 4, 5, 7, 

and 34% of the overall variability in residential outdoor 

concentrations, respectively. RH was associated 

negatively with lnCout. RH was not selected in models 

for Los Angeles. All the Houston models included 

either dew point or RH as a predictor of lnCout. For OC 

and the four p-PAHs of Houston, dew point and RH 

were the most influential variables selected, while 

wind speed and atmospheric stability were the most 

influential variables selected in Los Angeles. 

Precipitation was included in the four models in 

Houston and one model in Los Angeles. The models 

that included precipitation were PM2.5, OC, BaP, and 

Per in Houston with the partial R2s explaining 10, 6, 5, 

and 7% of overall variability in residential outdoor 

concentrations, respectively. Precipitation was 

included in the PM2.5 model in Los Angeles with the 

partial R2 explaining of 8% of overall variability in 

residential outdoor concentrations. Precipitation was 

associated negatively with PM2.5 in Houston and in Los 

Angeles. In contrast, positive associations were 

observed in the OC, BaP, and Per models in Houston, 

indicating that higher concentrations were measured on 

sampling days with higher precipitation. It is important 

to note that sampling was  not performed during days 

of heavy precipitation.

3.3. Source proximity 

The lnCout of EC had strong correlations with source 

proximity to petrochemical facilities in Houston (Table 

7). Because it had the strongest association with EC, 

proximity to the petrochemical facilities was chosen to 

represent the general petrochemical refineries in 

Houston. Source proximity to petrochemical emissions 

was selected as the first and the most influential 

variable selected explaining 17% of overall variability 

in residential outdoor EC concentrations in Houston. 

Other than EC in Houston, source proximity was not 

selected for any PM2.5 constituent models in Houston. 

Information on the point sources of the PM2.5 

constituents was not available for each species in the 

1999 NEI. PAHs were listed as mixtures of polycyclic 

organic matter (POM) in three categories of 15-PAHs, 

7-PAHs, and Non-15-PAHs. Area sources of VOCs 

were tested in order to determine if any of them were 

selected for models and thus detect false associations. 

As expected, the proximity to VOCs facilities was not 

significant and not selected in the PM models, 

reassuring that each regression model was selective 
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only for influential variables explaining the residential 

outdoor levels of the specific air contaminant.   

Highway proximity was included in models of Cor, 

BghiP, BaP, and EC in Houston with the partial R2s 

explaining 7, 7, 4, and 3% of overall variability in 

residential outdoor concentrations, respectively. 

Highway proximity was a significant predictor in all 

seven models in Los Angeles for EC, OC, BghiP, Per, 

Cor, BaP, and PM2.5 mass with partial R2s explaining 

16, 10, 7, 6, 6, 4, and 3% of overall variability in 

residential outdoor concentrations, respectively. Both 

highway and arterial roadway proximity were selected 

as variables in the PM2.5 mass model in Los Angeles. 

Among the 14 models in Houston and Los Angeles, 11 

models included highway proximity, and one model 

included arterial roadway proximity. Highway 

proximity was the first variable selected in the EC 

model in Los Angeles, and the second variable selected 

in OC, BaP, and Cor in Los Angeles. Arterial roadway 

proximity was the second variable selected in the PM2.5 

mass model in Los Angeles with a partial R2 explaining 

6% of overall variability in residential outdoor concent 

-rations. Highway proximity and arterial roadway 

proximity were positively associated with lnCout in all 

models. Therefore models confirm that close proximity 

to traffic increased lnCout, and that the concentrations 

decreased as the distance from the highways or arterial 

roadways increased. 

4. Discussion

We have previously found that the majority of 

indoor PM2.5, PAHs, and EC concentrations inside 

RIOPA homes originated from outdoor sources (Meng 

et al., 2007; Naumova et al., 2002; Polidori et al., 

2006). Thus, the characterization of the impact of 

mobile and point emission sources on residential 

outdoor concentrations is important for understanding 

the outdoor source contribution of PM2.5 constituents to 

population exposure (Kwon et al., 2006; Polidori et al., 

2010). 

This study demonstrates the significant influence of 

source proximity on outdoor residential concentrations 

of eleven PM2.5 constituents measured in Houston and 

Los Angeles, and the influence of site-specific 

meteorological conditions for all PM2.5 constituents. 

Because PM2.5 mass and OC include major constituents 

that are secondarily formed regionally through 

atmospheric chemistry, it was expected that the 

enhancement of PM2.5 mass and OC are not nearly as 

large as the enhancement of PM components such as 

EC and p-PAHs that are mainly emitted directly from 

the primary sources (Table 7). Not only smaller 

enhancements were observed, but also the PM2.5 mass 

and OC models in Houston did not include any 

emission sources. PM2.5 mass and OC models in Los 

Angeles included mobile sources, however, overall 

variability explained by these models were relatively 

smaller (<28%) for PM2.5 and OC in Houston and Los 

Angeles (Table 5). 

In Houston, the partial R2 value for the source 

proximity to refineries and highways accounted for 

46% of the R2 for EC model while wind speed, RH, and 

atmospheric stability accounted for 54%. This suggests 

that the impact of emissions from petrochemical 

facilities and refineries on the lnCout of EC near the 

Houston Ship Channel and surrounding areas, where 

the Houston homes were mostly located, can be 

significant. In Elizabeth, NJ, proximity to refinery and 

truck loading areas were previously shown to be 

associated with elevated lnCout of EC (Polidori et al., 

2010). The impact of emission from highways on EC 

concentrations in Los Angeles was significant. 

However, the impact of emission from point sources, 

such as refineries, on EC concentrations in Los 

Angeles was not significant because the homes in Los 

Angeles were not near refineries. In Los Angeles, the 

model partial R2 for highway proximity was larger than 

for wind speed, accounting for 16 and 14% of overall 

variability respectively. In a prior study, highway 
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Fig. 1. Simulated effect of wind speed on residential ambient 
air concentrations of ECin Houstonand Los Angeles 
-estimated from the best fit models using the median 
values for other variables in each model.

Fig. 2. Simulated effect of wind speed on residential ambient 
air concentrations of BaP, Per, BghiP, and Cor in 
Los Angelesestimated from the best fit models using 
the median values for other variables in each model. 

proximity was included in models of PM2.5 mass, OC, 

BghiP, and Cor in Elizabeth, NJ (Polidori et al., 2010). 

Overall, the partial R2 for the meteorological 

variables was typically larger than that for the 

proximity variables for most of the Houston and Los 

Angeles models with exception of the EC in Houston, 

implying that a greater percentage of the explanatory 

power was due to changes in the meteorological 

conditions rather than to the distance from emission 

sources. Although the p-values for highway proximity 

were higher than p-values of other individual variables 

included in models, 11 of the 14 models in Houston 

and Los Angeles included the roadway proximity. 

Overall, the multiple regression models explained 

22~50% of the total variability of Cout of PM2.5 

constituents. 

4.1. Wind speed and stability 

The most frequently selected meteorological 

variable explaining the variability of Cout of PM2.5 and 

selected constituents was wind speed. Seven of the 9 

models included wind speed as either first or second 

predictor variable with higher than 50% of model R2 

values for 3 models. The consistent inclusion of wind 

speed confirmed the importance of wind speed on the 

airborne concentration of PM in cities and the effect of 

horizontal dispersion on the dilution of air pollutants. 

Wind speed was also selected and associated 

negatively with concentration of PM2.5, Cor, and BghiP 

in a previous analysis of RIOPA data in Elizabeth, NJ 

(Polidori et al., 2010). Atmospheric stability was 

included in eight models including four p-PAHs 

models in Los Angeles together with the wind speed. 

Atmospheric stability and wind speed accounted for 

more than 86% of model R2 for p-PAHs in Los Angeles 

explaining greater than 40% of overall variability in 

residential outdoor concentrations. Stability was 

included in the PM2.5 mass, OC, EC, BghiP, and Cor 

models in Elizabeth NJ with positive coefficients 

(Polidori et al., 2010).

4.2. Effect of wind

The calculated Cout for EC estimated from the 

multiple regression models are plotted against wind 
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Fig. 3. Simulated effect of atmospheric stability on residential 
ambient air concentrations of BghiP and Cor in 
Houston estimated from the best fit models using the 
median values for other variables in each model.

Fig. 4. Simulated effect of atmospheric stability on residential 
ambient air concentrations of BaP, Per, BghiP, and 
Cor in Los Angeles estimated from the best fit 
models using the median values for other variables 
in each model.

speed in Houston and Los Angeles in Fig. 1 and for the 

Los Angeles p-PAHs in Fig. 2. The regression model 

results were based on the range of wind speeds 

measured in each city with all other variables in each 

model being held constant at the observed median 

values. The calculated Cout of the PM2.5 constituents 

decreased with increasing wind speed. The wind speed 

ranged from 1.0 to 6.2 m/s in Houston, while it ranged 

from 0.26 to 2.3 m/s in Los Angeles. The explained Cout 

in Los Angeles decreased more rapidly than that of 

Houston per unit increase of wind speed as shown in 

Fig. 1. Across the PM2.5 components, the Cout estimated 

at the minimum wind speed ranged from 2- to 82-fold 

higher in Los Angeles, and was 1.6-fold higher in 

Houston than the Cout estimated at the maximum wind 

speed for each site using the median distance between 

the home and sources. The enhancement of the 

calculated Cout of p-PAHs between the minimum and 

the maximum wind speed in Los Angeles was more 

significant (7- to 82-fold) than for the other PM 

constituents (2- to 3.3-fold) probably because p-PAHs 

were primarily emitted from local sources compared to 

other constituents of PM2.5 and OC. 

4.3. Effect of atmospheric stability 

The relationship between the calculated Cout of 

p-PAHs and the effect of atmospheric stability in 

Houston and Los Angeles estimated from the multiple 

regression models is illustrated in Fig. 3 and 4 The 

regression models were run by varying atmospheric 

stability across the observed range and using the 

respective median values for all other variables. The 

calculated Cout of p-PAHs increased with increasing 

amount of time with a stable or neutral atmospheric 

stability class during the sampling period. Atmospheric 

stability ranged from 0.05 to 0.95 in Houston, and from 

0.44 to 1.0 in Los Angeles for the PM2.5 constituents.  

Cout’s estimated at the maximum atmospheric stability 

were 11- to 16-fold higher for p-PAHs in Houston (Fig. 

3), and 15- to 47-fold higher in p-PAHs in Los Angeles 

(Fig. 4), respectively, than the Cout’s estimated at the 

minimum atmospheric stability. Increase between 
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minimum and maximum atmospheric stability for 

BghiP and Cor in Houston were 11- and 16- fold 

respectively, which were comparable to the increases 

observed for BghiP and Cor in Los Angeles, 16- and 

22-fold respectively. The effect of atmospheric 

stability was relatively more significant for the Cout of 

p-PAHs compared to the effect of atmospheric stability 

on the Cout of PM2.5, OC, and EC concentrations. 

4.4. Dewpoint, RH, and precipitation

In the previous analysis on PM2.5 constituents in 

Elizabeth, NJ (Polidori et al., 2010), temperature was 

associated negatively with the concentrations of BghiP 

and Cor. One possible explanation is the seasonal 

difference in gas/particle partitioning, and the increase 

of incomplete combustion byproducts from mobile 

source emissions at colder temperatures. Rather than 

temperature, dewpoint was included in four models in 

Houston and one model in Los Angeles. Dewpoint was 

negatively associated with the lnCout of OC, Per, 

BghiP, and Cor in Houston, while it was positively 

associated with the lnCout of PM2.5 in Los Angeles. RH 

was included in models of PM2.5, OC, EC, and BaP in 

Houston, but RH was not included in any Los Angeles 

model. RH was associated negatively with lnCout for all 

four models in Houston. RH and dewpoint were 

included concurrently in the OC model with negative 

coefficients in Houston. Dewpoint, and RH are 

indicators of the moisture in the atmosphere along with 

the interaction with temperature. It seems likely that 

the higher water vapor content in the atmosphere is 

associated with decreased Cout of PM2.5 constituents in 

Houston. The results are also similar to VOCs analysis 

of the RIOPA study by Su et al. (2013), who reported 

that RH was negatively associated with residential 

outdoor concentrations of benzene, ethylbenzene, 

m,p-xylene, o-xylene, MTBE, styrene, and β-pinene. 

The inclusion of RH and/or dewpoint in Houston may 

imply a potentially greater impact of the humid climate 

in Houston on Cout compared to Los Angeles or 

Elizabeth. The seasonality observed in Elizabeth may 

reflect the colder temperatures in the winter that are not 

as extreme in Houston or Los Angeles.

Precipitation was associated negatively with PM2.5 

in Houston and in Los Angeles, which indicating 

decreased lnCout with increased precipitation. The 

scavenging of PM2.5 by precipitation was observed in 

PM2.5 both in Houston and Los Angeles suggesting that 

it is an important removal mechanism (Akyuz and 

Cabuk, 2009). In contrast to PM2.5, positive 

associations were observed for precipitation in the OC, 

BaP, and Per models in Houston. This inconsistent 

association of precipitation may indicate that either 

emissions of the p-PAHs were increased or 

unfavorable conditions for dispersion of p-PAHs 

occurred in Houston in comparatively more rainy days. 

It should be noted that the most of the RIOPA samples 

were not collected during heavy rain, therefore impact 

of precipitation in this analysis cannot be accurately 

generalized for rainy climate. Although the scavenging 

of PM2.5 constituents by precipitation is expected  

(Akyuz and Cabuk, 2009), positive correlation of 

precipitation on PAHs are not uncommon. A 

significant positive correlation between PAHs and 

precipitation was observed in a site of Flanders 

(Ravindra et al., 2006), and significant inconsistency of 

the model estimated coefficients for precipitation were 

observed even among the adjacent sites for 

simultaneous time periods (Kim et al., 2013). 

While the association of wind speed (negative) and 

atmospheric stability (positive) with Cout of PM2.5 

constituents were consistent across the models, the 

directions of association with Cout of PM2.5 constituents 

with dewpoint, precipitation, and RH were inconsistent. 

Wind speed and atmospheric stability represent 

horizontal and vertical dispersion and dilution of PM2.5 

constituents, while dewpoint, precipitation, and RH 

may also be related to temporal changes of emissions 

during sample period which vary in different urban 

areas. This may be related to regional climate factors 
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that interact with meteorological variables differently 

in locations with different climate. 

4.5. Effect of point sources  

The model-estimated EC concentrations were 

calculated against the proximity to petrochemical 

facilities in Houston, while all other variables were 

held constant using the observed median values. The 

calculated Cout of EC decreased with increasing 

distance to petrochemical facilities. The Cout of EC in 

Houston estimated at the closest distance of 10.6 km is 

0.85 μg/m3, which is 1.7-fold higher than the 

estimated Cout of EC of 0.49 μg/m3, at the farthest 

distance of 70.1 km (Table 7). In Elizabeth, NJ, EC 

concentration was previously found to be associated 

with proximity to a refinery and a truck loading area, 

and PM2.5 was associated with truck loading areas 

(Polidori et al., 2010). The EC model in Houston 

included highway proximity concurrently in addition 

to point source proximity. 

4.6. Effect of highways 

Model-calculated Cout of p-PAHs, PM2.5, OC and 

EC against proximity to highways in Houston and Los 

Angeles while all other variables held constant at their 

observed median values are shown in Table 7. The 

calculated Cout of BghiP, and Cor in Houston and 

PM2.5, OC, EC, Per, and BghiP in Los Angeles 

increased with decreasing distances to highways. To 

avoid misleading model explanatory power, 

calculation of individual variable effects were limited 

to PM2.5 constituents with adjusted model R2 larger 

than 0.25 and individual variables with p<0.05. 

Therefore, enhancement effects for EC and BaP in 

Houston, and BaP and Cor in Los Angeles should be 

carefully interpreted due to the higher individual 

p-values (p>0.05) of the highway proximity. The sum 

of distances to the 5 closest highways ranged between 

13.1 and 42 km in Houston, while it ranged between 

12.7 and 29.4 km in Los Angeles. The Cout of EC 

estimated at the closest distances were 3.5-fold (2.6 

µg/m2 vs. 0.75 µg/m3) higher in Los Angeles compared 

to the Cout estimated at the farthest distances (Table 7). 

The Cout of PM2.5 and OC in Los Angeles estimated at 

the closest distance were 1.5- and 1.8-fold higher 

respectively compared to the Cout of estimated at the 

furthest distance. The increase in calculated Cout 

between maximum and minimum distance to highways 

for p-PAHs in Houston and Los Angeles were 

comparable. The increases between maximum and 

minimum distances for BghiP and Cor in Houston were 

5.3-and 6.3-fold respectively, and for Per and BghiP in 

Los Angeles were 9.3- and 5.4-fold respectively. The 

enhancements of estimated concentration in closest 

proximity were greater for primary PM constituents 

(p-PAHs, EC) that are directly emitted from sources 

compared to the enhancements for OC and PM2.5 mass 

(Table 7). This is expected because PM2.5 mass and OC 

have large regional secondary sources meaning 

particulate matter formed from gaseous emissions 

through gas and multiphase chemistry (Turpin et al., 

2000). A recent Los Angeles Airport study reported 

large increases, 4- to 11-fold, over local background in 

particle number concentrations that routinely extended 

18 km downwind with the greatest increases observed 

at locations under landing jet trajectories (Hudda and 

Fruin, 2016). Likewise, emission sources such as a 

congested network of highways in urban areas, 

continuously emit mixtures of pollutants. Their 

influence was greater in close proximity elevating 

urban background levels several km downwind 

especially for the primarily emitted PM constituents 

such as EC and particle-bound PAHs.    

5. Conclusions

Multiple regression models identified the 

meteorological variables and proximity to point, area, 

and mobile sources that accounted for the greatest 

amount of variability in outdoor residential Cout of 
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PM2.5 and selected constituents in Houston and Los 

Angeles. The multiple regression models explained 

22~50% of the total variability of Cout of PM2.5 mass 

and OC, EC, Per, BaP, BghiP, and Cor constituents. 

Difference in emission sources and meteorological 

conditions between the two urban sites studied led to 

some differences in variables included in the 

regression models. Wind speed, atmospheric stability, 

and RH were included as influential factors for several 

PM2.5 constituents with consistent association in 

Houston and Los Angeles. Stability, wind speed, and 

highway proximity were the significant factors for 

p-PAHs in Los Angeles. Highway proximity was 

included in all seven models in Los Angeles while it 

was included in four models (EC, Per, BaP, BghiP, and 

Cor) in Houston. Proximity to petrochemical facilities 

was significant predictor for EC concentrations in 

Houston concurrently with highway proximity.

The dilution effect of high wind speed is 

demonstrated by negative associations of wind speed 

with concentrations. Atmospheric stability increase 

was associated with concentration increase in six 

models in two cities. Dewpoint and precipitation were 

included as influential factors for several PM2.5 

constituents, however the association varied by 

different constituents or by sites. 

This study characterized residential outdoor 

concentrations of PM2.5 constituents in urban 

residential areas in different cities with distinctively 

different climates and different local geographic 

profiles of emission sources in each study area 

successfully. The findings of this study supports the 

previous study performed on the VOCs in the same 

areas (Kwon et al., 2016). The results confirmed that 

urban site-specific regression model analysis on the 

community level sampling can be used for improving 

exposure estimates of the multi-components of PM2.5 

for epidemiological research in urban environments 

using available information of site-specific 

meteorology and location of the emission sources. 
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Abbreviations  

1999 NEI: National Emission Inventory of 1999

Cout: residential outdoor concentrations

EC:  elemental carbon in PM2.5

BaP: benzo-[a]-pyrene in PM2.5

BghiP: benzo-[g,h,i]-perylene in PM2.5

Cor: coronene in PM2.5
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OC: organic carbon in PM2.5

Per: perylene in PM2.5

PM2.5: fine particulate matter with an aerodynamic 

diameter of 2.5 μm or smaller 

POM: Polycyclic organic matter 

p-PAHs: particle bound polycyclic aromatic 

hydrocarbons 

RH: relative humidity

RIOPA: Relationship among Indoor, Outdoor, and 

Personal Air
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