• Title/Summary/Keyword: Design tree

Search Result 1,049, Processing Time 0.027 seconds

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

Development of Customized Strategy for Enhancing Automobile Repurchase Using Data Mining Techniques (자동차 재구매 증진을 위한 데이터 마이닝 기반의 맞춤형 전략 개발)

  • Lee, Dong-Wook;Choi, Keun-Ho;Yoo, Dong-Hee
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.47-61
    • /
    • 2017
  • Purpose Although automobile production has increased since the development of the Korean automobile industry, the number of customers who can purchase automobiles decreases relatively. Therefore, automobile companies need to develop strategies to attract customers and promote their repurchase behaviors. To this end, this paper analyzed customer data from a Korean automobile company using data mining techniques to derive repurchase strategies. Design/methodology/approach We conducted under-sampling to balance the collected data and generated 10 datasets. We then implemented prediction models by applying a decision tree, naive Bayesian, and artificial neural network algorithms to each of the datasets. As a result, we derived 10 patterns consisting of 11 variables affecting customers' decisions about repurchases from the decision tree algorithm, which yielded the best accuracy. Using the derived patterns, we proposed helpful strategies for improving repurchase rates. Findings From the top 10 repurchase patterns, we found that 1) repurchases in January are associated with a specific residential region, 2) repurchases in spring or autumn are associated with whether it is a weekend or not, 3) repurchases in summer are associated with whether the automobile is equipped with a sunroof or not, and 4) a customized promotion for a specific occupation increases the number of repurchases.

Design of a Booth's Multiplier Suitable for Embedded Systems (임베디드 시스템에 적용이 용이한 Booth 알고리즘 방식의 곱셈기 설계)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.838-841
    • /
    • 2007
  • In this study, we implemented a $17^*17b$ binary digital multiplier using radix-4 Booth's algorithm. Two stage pipeline architecture was applied to achieve higher throughput and 4:2 adders were used for regular layout structure in the Wallace tree partition. To evaluate the circuit, several MPW chips were fabricated using Hynix 0.6-um 3M N-well CMOS technology. Also we proposed an efficient test methodology and did fault simulations. The chip contains 9115 transistors and the core area occupies about $1135^*1545$ mm2. The functional tests using ATS-2 tester showed that it can operate with 24 MHz clock at 5.0 V at room temperature.

  • PDF

Design of a TIQ Based CMOS A/D Converter for Real Time DSP (실시간 디지털 신호처리를 위한 TIQ A/D 변환기 설계)

  • Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • This paper presents a CMOS TIQ flash A/D converter which operates very fast compared to other types of A/D converters due to its parallel architecture. The output resolution of designed A/D converter is 6-bit. In order to reduce the power consumption and chip area of conventional flash A/D converter, TIQ based flash A/D converter is proposed, which uses the advantage of the structure of CMOS transistors. The length and width of transistors of TIQ were determined with HSPICE simulation. To speed up the ultra-high speed flash A/D converter, the Fat Tree Encoder technique is used. The TIQ A/D converter was designed with full custom method. The chip's maximum power consumption was 38.45mW at 1.8V, and the operating speed of simulation was 2.7 GSPS.

  • PDF

Development of a Tree-shaped Wind Power System Using Piezo-electric Materials (압전 재료를 이용한 나무형 풍력 발전 시스템 개발)

  • Oh, Seung-Jin;Han, Hyun-Joo;Han, Soo-Bin;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • This paper reports an experimental investigation to design a tree-shaped wind power system using piezo-electric materials. The proposed system is to produce power if wind is strong enough to produce any bending motions in the energy converting elements, i.e., piezo-electric materials. Two different kinds of piezoelectric materials are used in the present study to produce power by scavenging energy from the wind. The soft flexible one made the leaf element while the hard one was applied to the trunk portion of the tree requiring rather strong winds to generate any power. Although small, each leaf deems to play the role of a power producer and currents are continuously trickling down to the storage battery installed at the bottom of the system.

A Pseudopolynomial-time Algorithm for Solving a Capacitated Subtree of a Tree Problem in a Telecommunication System

  • Cho, Geon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.485-498
    • /
    • 1996
  • For a tree T rooted at a concentrator location in a telecommunication system, we assume that the capacity H for the concentrator is given and a profit $c_v$, and a demand $d_v$, on each node $\upsilon$ of T are also given. Then, the capacitated subtree of a tree problem (CSTP) is to find a subtree of T rooted at the concentrator location so as to maximize the total profit, the sum of profits over the subtree, under the constraint satisfying that the sum of demands over the subtree does not exceed H. In this paper, we develop a pseudopolynomial-time algorithm for CSTP, the depth-first dynamic programming algorithm. We show that a CSTP can be solved by our algorithm in $\theta$ (nH) time, where n is the number of nodes in T. Our algorithm has its own advantage and outstanding computational performance incomparable with other approaches such as CPLEX, a general integer programming solver, when it is incorporated to solve a Local Access Telecommunication Network design problem. We report the computational results for the depth-first dynamic programming algorithm and also compare them with those for CPLEX. The comparison shows that our algorithm is competitive with CPLEX for most cases.

  • PDF

3D Game Rendering Engine Degine using Empty space BSP tree (Empty space BSP트리를 이용한 3D 게임 렌더링 엔진 설계)

  • Kim Hak-Ran;Park Hwa-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.345-352
    • /
    • 2005
  • This paper aims to design Game Rendering Engine for real-time 3D online games. Previous, in order to raise rendering speed, BSP tree was used to partitioned space in Quake Game Engine. A game engine is required to develop for rapidly escalating of 3D online games in Korea. too. Currently rendering time is saved with the hardware accelerator which is working on the high-level computer system. On the other hand, a game engine is needed to save rendering time for users with low-level computer system. Therefore, a game rendering engine is which reduces rendering time by PVS look-up table using Empty space BSP tree designed and implemented in this paper

  • PDF

Maintaining Robust Spanning Tree in Wireless Ad-hoc Network Environments (무선 Ad-hoc 네트워크 환경에서 강건한 신장 트리를 유지하는 기법)

  • 강용혁;엄영익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.902-911
    • /
    • 2002
  • A wireless ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any centralized adminstration or standard support services. Wireless ad-hoc networks may be quite useful in that they can be instantly deployable and resilient to change. In this environment, for many crucial distributed applications, it is necessary to design robust virtual infrastructures that are fault-tolerant, self-stabilized, and resource-efficient. For this task this paper proposes a scheme of maintaining robust spanning trees which are little affected by topological changes. By maintaining such a spanning tree and adapting it to the environments with frequent topological changes, one can improve the reliability and efficiency of many applications that use the spanning tree.

Experiments on decision tree analysis for four-peg tower of Hanoi (4 개의 기둥을 가진 하노이의 탑에 대한 결정 트리 생성 실험)

  • Kang, Dae-Ki;Choi, Jae-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.171-172
    • /
    • 2011
  • In this research, we discuss the process of analyzing the solution of four-peg tower of Hanoi using protocol analysis technique, and of developing decision trees from the analyzed contents. For these, we design and implement a computer program that can simulate four-peg tower of Hanoi. The implemented program generates a certain regular-to-regular tower of Hanoi problem, let a user to solve the problem, and records the solution process. From the process by the implemented program and the recorded protocol, we can build the decision tree for the solution. We expect this research can contribute to find a non-optimal solution for n-peg tower of Hanoi.

  • PDF

Maximum Node Interconnection by a Given Sum of Euclidean Edge Lengths

  • Kim, Joonmo;Oh, Jaewon;Kim, Minkwon;Kim, Yeonsoo;Lee, Jeongeun;Han, Sohee;Hwang, Byungyeon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.246-254
    • /
    • 2019
  • This paper proposes a solution to the problem of finding a subgraph for a given instance of many terminals on a Euclidean plane. The subgraph is a tree, whose nodes represent the chosen terminals from the problem instance, and whose edges are line segments that connect two corresponding terminals. The tree is required to have the maximum number of nodes while the length is limited and is not sufficient to interconnect all the given terminals. The problem is shown to be NP-hard, and therefore a genetic algorithm is designed as an efficient practical approach. The method is suitable to various probable applications in layout optimization in areas such as communication network construction, industrial construction, and a variety of machine and electronics design problems. The proposed heuristic can be used as a general-purpose practical solver to reduce industrial costs by determining feasible interconnections among many types of components over different types of physical planes.