• 제목/요약/키워드: Design thickness

검색결과 4,169건 처리시간 0.029초

브러시레스 전동기에서 전자기적 가진력 및 열에 의한 기계적 음력해석 (Analysis of Mechanical Stress Due to Magnetic Force and Thermal Expansion in Brsushless Motor)

  • 하경호;홍정표;이근호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권5호
    • /
    • pp.221-227
    • /
    • 2002
  • This paper deals with the mechanical stress analysis due to electromagnetic forces and the optimal design of the link considering the stress. The link in Interior Permanent Magnet Brushless Motor(IPM) have influence on both mechanical and magnetic performance. The decrease of the link thickness serves to improve the torque, whereas this decreases the strength of link. Therefore, it is necessary to determine the appropriate link thickness considering electromagnetic forces and thermal expansion. The effects of the variation of link thickness on the mechanical stress and the electromagnetic performance are analyzed by the structural and electromagnetic Finite Element Method. In addition, the mechanical structure design of the link is performed to reinforce the mechanical strength against magnetic forces while preserving a food magnetic torque.

삼각형 배경 요소를 이용한 새로운 사각형 요소망 생성법 (A New Indirct Quadrilateral Mesh Generation Scheme from Background Triangular Mesh)

  • 권기연;박정민;이병채;채수원
    • 한국CDE학회논문집
    • /
    • 제11권2호
    • /
    • pp.107-114
    • /
    • 2006
  • A new quadrilateral mesh generation technique from an existing triangle mesh is proposed in this paper. The proposed method is based on advancing front method and zero-thickness layer. Beginning with an initial triangular mesh, boundary triangular elements are removed and quadrilateral elements with zero thickness are generated. A quality of quadrilateral elements is improved during a mesh smoothing process. Until all initial triangular elements are removed, this procedure is repeated. Sample meshes are constructed to demonstrate the mesh generation capability of proposed algorithm.

Reliability-based Approach to Optimal Economic Estimation of Concrete Cover Thickness under Carbonation Environment

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권2호
    • /
    • pp.103-110
    • /
    • 2009
  • Concrete carbonation is a cause of problems in concrete structures, so it needs to be estimated. And concrete cover is designed to protect structures from this damaging. Usually the cover thickness is considered based on the limit states design codes in which the important target is the reliability safety index. However, it is not clear that whether the safety index determined is optimal or not with respect to the cost. The codes are mainly proceeded quantitatively (i.e. making a safe structure) while the economic aspects are only considered qualitatively. So the reliability-based design considering life cycle cost (LCC) is called for, and here the focus is on the advanced analysis solution to optimize the reliability safety regarding LCC.

설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구 (The study of bending and buckling behavior of sandwich structure according to design parameter variation)

  • 한근조;안성찬;안성찬;김진영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

연속 냉간압연 시스템을 위한 비간섭 루프형성 LQ제어기 설계 (Noninteracting and Loop-Shaping LQ Controller Design for Tandem Cold Mills)

  • 김종식;김철민
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2629-2639
    • /
    • 1994
  • A robust multivariable controller is synthesized for tandem cold mills. A blocked-noninteracting control method is applied for simplifying the structure of rolling control systems. And, a loop-shaping LQ control method is applied for maintaining the variation of the thickness and tension of each rolling stand as small as possible. In this paper, the effects of the design parameter on loop-shaping and the number of control inputs are evaluated. The simulation results show that the thickness and tension control accuracy of tandem cold mills can be improved by the blocked-noninteracting and compensated loop-shaping LQ controller.

전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계 (Bumper Stay Design for Improving Frontal Crash Performance of Front Body)

  • 강성종
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.

단일겹침 접착제 접합부의 응력분포와 강도평가 (Stress Distribution and Strength Evaluation of Adhesive Bonded Single-lap Joints)

  • 이중삼;임재규;김연직
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.342-347
    • /
    • 2001
  • Recently, adhesive-bonding technique is wifely used in manufacturing structures. Stress and strain analysis of joints are essential to design adhesive-bonded joints structure. The single-lap adhesive joint is the design dominating the range of adhesive joints. In this study, single-lap specimens with different joint dimensions were used for the tensile-shear test and finite element calculation in of order to investigate the effect of overlap length and adhesive-bonding thickness on adhesive strength and stress distribution of the joints. Consequently, it was found that overlap lap size and thickness can be important parameters of structure joints using adhesive bonding, which is effected on adhesive strength.

  • PDF

초고압 XLPE 전력케이블 절연두께 저감화 (Reduction of Insulation thickness for EHV XLPE power cable)

  • 이기수;최웅;최영훈;최봉남;김도영;윤덕환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2271-2273
    • /
    • 1999
  • The manufacturing technology of XLPE power cable ( e.g. gas curing, triple common extrusion, clean room, super-clean compound, etc.) had been developed in 1960's and the design parameter of insulation thickness for EHV XLPE power cable at present was determined in 1960's. But, the quality of XLPE power cable has been improved up to now. The re-evaluation of design parameter for insulation thickness reductions is required and so we performed weibull plotting test using model cable. This paper describes the evaluation details of the insulation characteristics according to weibull plotting test.

  • PDF

물성치의 불확실성을 고려한 복합재료 적층판의 최적 설계 (Optimal Design of Composite Laminated Plates with the Uncertainty in Material Properties Considered)

  • 김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2000
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. One of them is the handling of the uncertainties in material properties, which were ignored in most researches in the past. In this paper, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties in the thickness optimization. Numerical results show that the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.

  • PDF

Linear buckling analysis of welded girder webs with variable thickness

  • Maiorana, Emanuele;Pellegrino, Carlo
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.505-524
    • /
    • 2011
  • Steel girder web panels have been subjected in recent decades, to a number of experimental and numerical studies but the mechanisms that regulate the behaviour of the panels composed by two subpanels with different thickness were not deeply studied. Furthermore specific design rules regarding the estimation of the buckling coefficient for panels with variable thickness are not included in the codes even if this is a common situation particularly for steel bridge girders with beams having significant height. In this framework,this work aims to investigate buckling behaviour of steel beams with webs composed of panels with different thicknesses subjected to both in-plane axial compression and bending moment and gives some simplified equations for the estimation of the buckling coefficient.