• 제목/요약/키워드: Design space Optimization

검색결과 755건 처리시간 0.027초

7수준 직교배열을 적용한 터보팬 엔진 설계점 최적화 (Optimization of Turbofan Engine Design Point by using Seven Level Orthogonal Array)

  • 김명호;김유일;이광기;황기영;민성기
    • 한국추진공학회지
    • /
    • 제17권4호
    • /
    • pp.10-15
    • /
    • 2013
  • 설계 최적화를 위해서 설계자는 우선적으로 설계영역 전반에 걸쳐 정확한 정보를 획득하고, 설계영역 탐색을 실시한 후에 최적화를 실시해야 한다. 최근에 설계영역 탐색을 우선적으로 실행하기 위하여 실험계획법과 반응표면모델에 최적화를 적용하는 통합설계 프레임워크의 적용이 산업체 전반으로 일반화되고 있다. 본 연구에서는 터보팬 엔진 설계점 최적화를 위하여, 설계영역의 정보를 조밀하게 얻을 수 있으며 통계학적인 직교성과 균형성을 모두 만족하는 7 수준 직교배열을 생성한 후에 반응표면모델을 구축한다. 구축된 반응표면모델에 전역 최적값을 찾기 위하여 다목적 유전자알고리즘을 적용하여 주어진 제한조건을 만족하는 최적값을 찾아 GasTurb 결과와 검증을 수행한다.

Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method

  • Son, Seok-Ho;Choi, Byung-Lyul;Jin, Won-Jin;Lee, Yung-Gyo;Kim, Cheol-Wan;Choi, Dong-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.423-431
    • /
    • 2016
  • In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluid-structure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of $C_L=1.0$. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape.

실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계 (Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming)

  • 이동우;백석흠;이경영;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

크리깅의 실험계획법 (Design of Experiment for kriging)

  • 정재준;이창섭;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1846-1851
    • /
    • 2003
  • Approximate optimization has become popular in engineering field such as MDO and Crash analysis which is time consuming. To accomplish efficient approximate optimization, accuracy of approximate model is very important. As surrogate model, Kriging have been widely used approximating highly nonlinear system . Because Kriging employs interpolation method, it is adequate for deterministic computer simulation. Because there are no random errors and measurement errors in deterministic computer simulation, instead of classical DOE ,space filling experiment design which fills uniformly design space should be applied. In this work, various space filling designs such as maximin distance design, maximum entropy design are reviewed. And new design improving maximum entropy design is suggested and compared.

  • PDF

Design of GBSB Neural Network Using Solution Space Parameterization and Optimization Approach

  • Cho, Hy-uk;Im, Young-hee;Park, Joo-young;Moon, Jong-sup;Park, Dai-hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 2001
  • In this paper, we propose a design method for GBSB (generalized brain-state-in-a-box) based associative memories. Based on the theoretical investigation about the properties of GBSB, we parameterize the solution space utilizing the limited number of parameters sufficient to represent the solution space and appropriate to be searched. Next we formulate the problem of finding a GBSB that can store the given pattern as stable states in the form of constrained optimization problems. Finally, we transform the constrained optimization problem into a SDP(semidefinite program), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

개선된 공간 탐색 알고리즘을 이용한 정보입자 기반 퍼지모델 설계 (Design of IG-based Fuzzy Models Using Improved Space Search Algorithm)

  • 오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.686-691
    • /
    • 2011
  • This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of two optimization mechanisms: structure identification and parameter identification. The structure identification is supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least square error method. A suite of comparative studies show that the proposed model leads to better performance in comparison with some existing models.

다분야 통합 최적설계 프레임워크 구축방법 분석 (Analysis of development methods for a Multidisciplinary Design Optimization framework)

  • 이호준;이재우;문창주;김상호;이정욱
    • 한국항공우주학회지
    • /
    • 제36권10호
    • /
    • pp.947-953
    • /
    • 2008
  • 다분야 통합 최적설계(MDO) 프레임워크는 항공우주시스템의 설계에 고려해야 할 다양한 설계 분야의 통합적이고 동시적인 해석 및 설계 최적화를 위한 통합 환경으로 해석자원 및 최적화자원은 물론 CAD 툴과 DBMS 또한 통합해야하며 사용자편의환경을 제공해야한다. 또한 설계하고자 하는 대상 및 개발환경에 따라 프레임워크의 구축방법은 달라질 수 있다. 본 논문에서는 개발환경에 따라 단일 PC기반 프레임워크와 PLinda기반 프레임워크, 그리고 웹서비스 기반 프레임워크로 분류하여 이들을 비교 분석하였다.

Collaborative Optimization을 이용한 지구관측위성의 다분야 통합 최적 개념설계 (Multidisciplinary Design Optimization of Earth Observation Satellite Conceptual Design using Collaborative Optimization)

  • 김홍래;장영근
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.568-583
    • /
    • 2015
  • 본 논문에서는 다분야 통합 설계최적화(MDO : Multidisciplinary Design Optimization)를 적용한 지구관측위성의 개념설계 과정 및 결과를 기술하였다. 현재까지 구축된 지구관측 위성의 데이터베이스를 기반으로 주요 파라미터에 대한 개념설계식을 정립하였으며, 다분야 통합 최적설계 아키텍처 중 CO(Collaborative Optimization) 기반을 이용하여 지구관측 위성 시스템의 최적 개념설계를 수행할 수 있는 설계 도구를 개발하였다. 주어진 제약조건을 만족시키면서 위성의 총 질량을 최소화하는 것을 설계 목표로 설정하였으며, 최적화 알고리즘으로는 SQP(Sequential Quadratic Programming)를 이용하였다. 다분야 통합 최적설계를 적용한 개념설계 결과와 ASNARO-1 및 IKONOS-2 위성 규격의 비교를 통해 해당설계도구의 유용성을 검증하였다.

인공위성 카메라 주반사경의 위상최적화 (Topology Optimization of the Primary Mirror of a Multi-Spectral Camera)

  • 박강수;장수영;이응식;윤성기
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1194-1202
    • /
    • 2002
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. The optimization is carried out under self-weight and polishing pressure loading. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. As an objective function, a measure of Strehl ratio is used. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criteria method. For the light-weight primary mirror design, a three dimensional model is treated. As a preliminary example, topology optimization considering a self-weight loading is treated. In the second example, the polishing pressure is also included as a loading in the topology optimization of the mirror. Results of the optimized design topology for the mirror with various mass constraints are presented.

수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구 (New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules)

  • 장강원;남상준;김윤영
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.