• Title/Summary/Keyword: Design of measurement system

Search Result 2,459, Processing Time 0.028 seconds

The Design and Implementation of remote measurement using Internet Embedded Module (인터넷 엠베디드 모듈을 이용한 원격 계측의 설계와 구현)

  • Lee, Hee-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.5
    • /
    • pp.183-190
    • /
    • 2008
  • Recently, according to development of information-oriented society, internet application technology on electricity electron controled technology fields are diversified and the necessity of remote measurement by internet is gradually increased. In this paper, to meet in these necessity we design and implementation of remote measurement system using internet embedded module, which was developed for on-line measurement of various kinds of analogue data. This system is consisted of two parts greatly, hardware module for measurement and software module to control it. The advantage of this system is that users can acquisition the remote data of temperature and illumination etc. without extra serve pc easily. In order to test the validity of the proposed system, we examine the response and operating characteristic about several states. As a result of the test, we proved the effectiveness of it.

  • PDF

Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor (자기변형 센서 바이어스 자기계의 요크 위상최적설계)

  • Kim, Yoon-Young;Kim, Woo-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.923-929
    • /
    • 2004
  • A magnetostrictive sensor is a sensor measuring elastic waves. Because of its unique non-contact measurement feature, the sensor receives more attentions in recent years. These sensors have been mainly used to measure longitudinal and torsional waves in ferromagnetic waveguides, but there increases an interest in using the sensor for flexural wave measurement. Since the performance of the sensor is strongly influenced by the applied bias magnetic field distribution, the design of the bias magnetic system providing the desired magnetic field is critical. The motivation of this investigation is to design a bias magnetic system consisting of electromagnets and yokes and the specific objective is to formulate the design problem as a bias yoke topology optimization. For the formulation, we employ linear magnetic behavior and examine the optimized results for electromagnets located at various locations. After completing the design optimization, we fabricate the prototype of the proposed bias magnetic system, and test its performance through flexural wave measurements.

Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise (측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석)

  • Youn, Jae-Seung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

Design and Analysis of a State Feedback Controller for a Ball and Beam System under AC and DC Noise (볼-빔 시스템에서 AC 와 DC 노이즈가 포함된 상태 궤환 제어기 설계 및 분석)

  • Oh, Sang-Young;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-646
    • /
    • 2014
  • In this paper, we propose a controller for a ball and beam system which reduces the measurement error effect under AC and DC noise. The ball and beam system measures data through a sensor. If sensor noise is included in a controller via the feedback channel, the signal is distorted and the entire system cannot work normally. Therefore, some appropriate action for the measurement error effect is essential in the controller design. Our controller is equipped with a gain-scaling factor and a compensator to reduce the effect of measurement error in the feedback signal. Effectively, our proposed controller can reduce the AC and DC noise of a feedback sensor. We analyze the proposed controller by Laplace transform technique and illustrate the improved control performance via an experiment for a ball and beam system.

A Study on the Design of Sensory Nerve Conduction Velocity Measurement System (감각신경 전도속도 측정시스템 설계에 관한 연구)

  • Yoo, S.K.;Min, B.G.;Kim, J.W.;Kim, J.W.;Yoon, H.R.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.89-92
    • /
    • 1992
  • The sensory nerve study is the important index to diagnosis peripheral neuromyotic disease. This paper discusses about the design of parameter - latency, amplitude, conduction velocity - measurement system in the sensory nerve. This system consists of three parts which are Main Control Unit(MCU), Stimulator, and external output unit. Also new measurement algorithms which is adaptive threshold method is presented in this paper. The designed system is controlled by MCU includes automatic detection algorithms and self-diagnostic functions.

  • PDF

Finite Element Analysis of Nonlinear Behavior of a Column Type Sensing Element for Load Cell According to Design Parameters (기둥형 로드셀 감지부의 설계변수에 따른 비선형 거동해석)

  • Lee, Chun-Yeol;Gang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1540-1546
    • /
    • 2000
  • Recently, force measurement systems are commonly used in many industrial fields and the precision of the measurement system is getting more important as the industry needs more precise tools and in struments to make high quality products. However, a high precision force measurement system is hard to make unless we know precisely the causes, quality and quantity of measurement errors in advance. In this work, many possible mechanical causes of measurement errors are reviewed including ratio of length to diameter of sensing part, radius of contact area, radius of bearing part, ratio of material properties and change of boundary conditions. Also, the measurement errors are analyzed by nonlinear finite element method and the nonlinear behavior of the errors are investigated. The results can be used to design force measurement systems and expected to be very useful especially for compact type load cells.

Development of channel characteristics measurement system for Medium Voltage Power Line Grid (고압전력선 통신 채널 특성 측정 시스템 개발)

  • Lee, Jae-Jo;Lee, Won-Tae;Oh, Hui-Myoung;Kim, Kwan-Ho;Lee, Dae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2640-2642
    • /
    • 2002
  • In this paper, we show the channel characteristics measurement system the frequency range up to 30MHz for medium voltage Power Line Grid. Power line channel characteristics are investigated by means of various measurement instruments. Measurement system consists of medium voltage coupler, impedance measurement part, noise measurement part, voltage sensing part and communication part. Measured data will be used for PLC channel modeling and PLC network system design.

  • PDF

라인 드로잉에 의한 디자인 조형능력의 측정실험

  • 우흥룡
    • Archives of design research
    • /
    • v.14
    • /
    • pp.53-60
    • /
    • 1996
  • The most remarkable and characteristic problem of design is that of creativity of design. Originality is a part of creativity. In the process of designing, we used to handle design thoughts that shows some patte군 of divergent and productive thoughts. During design thinking, for example 'Idea sketch', We also are under Pattern Recognition and Gestalt principles organization. In this study, it is reorganized that the 'Originality Test of Line Drawing(OTLD)'is a measurement system for personal originality. There is a regression on two tests of OTLD, which has 1 Semester Interval. From the regression data, Test2 = 7.763 + 0.643Test1, F value : 55.219, Prob : 0.0001. We would suggest a measurement system for an ability of originality in design fields, but we couldn't find any reliability and validity for Fine Art fields. In this point, OTLD could be a development tool for design creativity.

  • PDF

Design and Implementation of High Power Source Measurement Unit (고 전력 Source Measurement Unit의 설계 및 제작)

  • Lee, Sang-Gu;Baek, Wang-Gi;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.860-863
    • /
    • 2003
  • In this paper high power SMU(Source Measurement Unit) having 50V/1.5A source/measure range has been designed and implemented. The SMU has two operation mode, voltage mode and current mode. The SMU can be used as variable voltage source, variable current source, voltage meter, or current meter. Combining two different unit, output power can be doubled as 100V/1.5A. The developed SMU tan be used many semiconductor testing system and electronic device inspecting system.

  • PDF

A Study on the Implementation of the DC Characteristic Measurement System for Semiconductor Devices (반도체 소자의 직류특성 측정 시스템의 구현에 관한 연구)

  • Park, In-Kyu;Shim, Tae-Eun;Jeong, Hae-Yong;Kim, Jae-Chul;Park, Jong-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.837-842
    • /
    • 2001
  • In this paper, we design and implement the DC characteristic measurement system for semiconductor devices. The proposed system is composed of 4 SMU(Source and Measure Unit) channels. Various efforts in hardware and software have been made to reduce the measurement errors. Internal and external sources of errors in measurement system especially in pA range measurement have been identified and removed. Also, various digital signal processing techniques are developed. Calibration is executed under the control of microprocessor periodically. Experimental results show that the implemented system can measure the DC characteristic of semiconductor devices with less than 0.2% error in various voltage and current source/measurement range.

  • PDF