• Title/Summary/Keyword: Design of Pump

Search Result 1,536, Processing Time 0.03 seconds

Flow Analysis for Optimal Design of Small Gear Pump (소형 기어펌프 최적화 설계를 위한 유동해석)

  • Lee, Suk-Young;Kim, Seung-Chul
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • Gear pump has a simple structure high reliability, easy operation and maintenance, widely used as a source of hydraulic system of hydraulic. In general, the gear pump was designed using variety of variables, the variables through the analysis of the mass flow rate and efficiency. In this paper, three-dimensional flow of the gear pump, in order to produce the optimal design of product, analysis was performed by using commercial software ANSYS v15.0 CFX. And then, combination of design parameters selected by ANSYS was carried out to confirm the simulation result. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased.

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

Performance Characteristic of a Pipe Type Centrifugal Pump (파이프형 원심펌프의 성능특성에 관한 실험적 연구)

  • Yu, HyeonJu;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.32-36
    • /
    • 2012
  • The positive displacement pump and the regenerative pump are widely used in the range of low specific speed, $n_s{\leq}100$[rpm, m3/min, m]. The positive displacement pump is not suitable for miniaturization and operation in high rotational speed. The regenerative pump has a problem with large leakage flow and low efficiency. While the centrifugal pump has advantages of high efficiency, miniaturization and high rotational speed, efficiency drops sharply with decrease in specific speed. Therefore the purpose of this study is to design a new type of centrifugal pump that has advantages of centrifugal pumps in operation in low specific speed. The name of this new type of pump was called 'Pipe type centrifugal pump', since the flow path through the impeller is simple circular pipe. Due to the simple shape of impeller, the manufacturing process is simple and cost is low. There is strong jet flow at the outlet of the impeller. This jet induces flow path loss, meridional dynamic pressure loss and mixing loss. Large disk friction makes the efficiency be limitted in the range of low specific speed. Even though the loss and the low efficiency, 'Pipe type centrifugal pump' represents stable performance, affordable pressure ratio and efficiency better than that of other low specific speed pumps.

Design and Performance Analysis of a Fuel Transfer Jet Pump in the Smart UAV Fuel Supply System (스마트무인기연료공급시스템 연료이송 제트펌프의 설계 및 성능해석에 관한 연구)

  • Park, Sul-Hye;Lee, Yoon-Kwon;Lee, Jee-Keun;Lee, Chang-Ho;Lee, Soo-Chul;Choi, Hee-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1013-1021
    • /
    • 2007
  • Design and performance analysis of the jet pump to transfer fuel between tanks in the smart UAV fuel supply system were carried out through one dimensional flow analysis and the flow analysis using a commercial CFD code. From the analysis results, it was proved that the jet pump was designed with the flow ratio of 2.23 that is the fundamental requirement of the jet pump design. The comparison results showed that the primary nozzle pressure is higher in the CFD analysis than in one dimensional flow analysis, mainly due to the underestimated loss coefficient of the primary nozzles. Consequently, the loss coefficients of the jet pump components should be determined more precisely for the design of the jet pumps with high performance.

The design of a charge pump for the high speed operation of PLL circuits (High speed에 필요한 PLL charge pump 회로 설계 및 세부적인 성능 평가)

  • 신용석;윤재석;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • In this paper, we designed a charge pump with a differential current switching structure and it was made of a MESFET with high speed switching Property compared with CMOSFETs. The charge pump with a differential current switching structure is analyzed about operating property of circuit in high frequency band. Also we propose a method on it's characteristics estimation. The designed circuit is simulated by HSPICE simulator, and in view of the results we think that the charge pump of this study can be used in circuits of 1 GHZ frequency band grade.

  • PDF

Study on Design of Air-water Two-phase Flow Centrifugal Pump Based on Similarity Law

  • Matsushita, Naoki;Furukawa, Akinori;Watanabe, Satoshi;Okuma, Kusuo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • A conventional centrifugal pump causes a drastic deterioration of air-water two-phase flow performances even at an air-water two-phase flow condition of inlet void fraction less than 10% in the range of relatively low water flow rate. Then we have developed a two-phase flow centrifugal pump which consists of a tandem arrangement of double rotating cascades and blades of outer cascade have higher outlet angle more than $90^{\circ}$. In design of the two-phase flow pump for various sized and operating conditions, similarity relations of geometric dimensions to hydraulic performances is very useful. The similarity relations of rotational speed, impeller diameter and blade height are investigated for the developed impeller in the present paper. As the results, the similarity law of rotational speed and impeller diameter is clarified experimentally even in two-phase flow condition. In addition, influences of blade height on air-water two-phase flow performances indicate a little difference from the similarity relations.

Cam Profile Design of a Fuel Pump Using Dynamic Analysis (동해석을 이용한 연료펌프의 캠 형상 설계)

  • Kim Bong-Ho;Lee Boo-Youn;Kim Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • This work focuses on reducing the noise and vibration levels of an LPi fuel pump, which are generated from the dynamic motions of pump elements and non-uniform flow of fuel. The noise and vibration levels increase as the revolution speed of the cam goes up. The fuel pump consists of five cavity cells, plungers and diaphragms, which are driven by the cam. The optimal design of the cam profile is performed to decrease the accelerations of moving Parts and to obtain a smooth hydraulic force through a dynamic analysis of a cam-plunger mechanism. The cam-Plunger with a cavity is modeled as a 2 degrees of freedom system having non-linear contacts, the cam profile being represented in terms of Fourier series in order to determine the optimal shape of the cam. From the optimized cam Profile, the acceleration of the diaphragm is reduced in $78\%$, the hydraulic force becoming smoother in case that the hydraulic force is rapidly dropped.

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.