• 제목/요약/키워드: Design load

검색결과 9,300건 처리시간 0.037초

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구 (A Study for the Development of Pile Design Method Considering Settlement and Compression)

  • 임종석;하혁;정상균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

비정상 CFD 해석기법을 활용한 5 MW 해상풍력터빈 극한 설계하중조건 해석 (Extreme Design Load Case Analyses of a 5 MW Offshore Wind Turbine Using Unsteady Computational Fluid Dynamics)

  • 김동현;이장호;트란탄도안;곽영섭;송진섭
    • 풍력에너지저널
    • /
    • 제5권1호
    • /
    • pp.22-32
    • /
    • 2014
  • The structural design of a wind turbine must show the verification of the structural integrity of all load-carrying components. Also, design load calculations shall be performed using appropriate and accurate methods. In this study, advanced numerical approach for the calculation of design loads based on unsteady computational fluid dynamics (CFD) is presented considering extreme design load conditions such as the extreme coherent gust (ECG) and the 50 year extreme operating gust (EOG). Unsteady aerodynamic loads are calculated based on Reynolds average Navier-Stokes (RANS) equations with shear-stress transport k-ω(SST k-ω) turbulent model. A full three-dimensional 5 MW offshore wind-turbine model with rotating blades, hub, nacelle, and tower configuration is practically considered and its aerodynamic interference effect among blades, nacelle, and tower is also accurately considered herein. Calculated blade loads based on unsteady CFD method with respect to blade azimuth angle are compared with those by NREL FAST code and physically investigated in detail.

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Optimisation of symmetric laminates with internal line supports for maximum buckling load

  • Walker, M.
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.633-641
    • /
    • 1998
  • Finite element solutions are presented for the optimal design of symmetrically laminated rectangular plates with various types of internal line supports. These plates are subject to a combination of simply supported, clamped and free boundary conditions. The design objective is the maximisation of the biaxial buckling load. This is achieved by determining the fibre orientations optimally with the effects of bending-twisting coupling taken into account. The finite element method coupled with an optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of internal line support type and boundary conditions on the optimal ply angles and the buckling load are numerically studied. The laminate behavior with respect to fibre orientation changes significantly in the presence of internal line supports as compared to that of a laminate where there is no internal supporting. This change in behavior has significant implications for design optimisation as the optimal values of design variables with or without internal supporting differ substantially.

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • 토지주택연구
    • /
    • 제7권4호
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

수정된 재생사이클 가스터빈의 설계 및 부분부하 성능해석 (Analysis of Design and Part Load Performance of a Modified Regenerative Cycle Gas Turbine)

  • 황성훈;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.467-472
    • /
    • 2005
  • Characteristics of a Modified regenerative cycle gas turbine has been investigated. In the cycle, the turbine expansion is divided into two parts and the regenerator locates between them. Two types of mechanical design are assumed: two-shaft and single-shaft. In particular, optimal pressure ratio division between the high and low pressure turbines is evaluated for the single shaft configuration. The part load analyses have been carried out with the aid of off-design models. In addition to the general fuel only control, a variable speed control is assumed as the part load operating strategy of the single shaft configuration. Obvious advantage with the alternative cycle is observed in the variable speed operation of the single shaft design.

  • PDF

가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 - (A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation -)

  • 장석한;김희광;이강현;한경수;함방욱;정기선
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

대구경 현장타설말뚝의 지지력 측정 사례연구 (A Case Study on the Measurement and Estimation of Bearing Capacity of Large Diameter Bored Pile)

  • 이원제;정훈준;이우진;장기수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.285-292
    • /
    • 2000
  • Though there has been increasing use of large diameter drilled shaft as a foundation structure of bridges, current practice for quality control is to confirm the minimum required load carrying capacity during construction stage. For economic and appropriate design of drilled shaft, it is necessary to evaluate the load transfer mechanism by pile load tests during initial stage of construction and to use the test results as a feedback to a revision of initial design. In this paper, results of load tests peformed at several domestic sites are presented to investigate the load transfer characteristics of large diameter drilled shaft. It was found that most of the load on piles is sustained by shaft friction and that only small portion of the load reaches the bottom of the drilled shaft. Some test results of drilled shaft by Pile Driving Analyzer performed at same sites are also presented to compare the load transfer characteristics interpreted from static pile load tests.

  • PDF