• Title/Summary/Keyword: Design flow

Search Result 8,704, Processing Time 0.044 seconds

Design of Synchronous 256-bit OTP Memory (동기식 256-bit OTP 메모리 설계)

  • Li, Long-Zhen;Kim, Tae-Hoon;Shim, Oe-Yong;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1227-1234
    • /
    • 2008
  • In this paper is designed a 256-bit synchronous OTP(one-time programmable) memory required in application fields such as automobile appliance power ICs, display ICs, and CMOS image sensors. A 256-bit synchronous memory cell consists of NMOS capacitor as antifuse and access transistor without a high-voltage blocking transistor. A gate bias voltage circuit for the additional blocking transistor is removed since logic supply voltage VDD(=1.5V) and external program voltage VPPE(=5.5V) are used instead of conventional three supply voltages. And loading current of cell to be programmed increases according to RON(on resistance) of the antifuse and process variation in case of the voltage driving without current constraint in programming. Therefore, there is a problem that program voltage can be increased relatively due to resistive voltage drop on supply voltage VPP. And so loading current can be made to flow constantly by using the current driving method instead of the voltage driving counterpart in programming. Therefore, program voltage VPP can be lowered from 5.9V to 5.5V when measurement is done on the manufactured wafer. And the sens amplifier circuit is simplified by using the sens amplifier of clocked inverter type instead of the conventional current sent amplifier. The synchronous OTP of 256 bits is designed with Magnachip $0.13{\mu}m$ CMOS process. The layout area if $298.4{\times}314{\mu}m2$.

Modified Thermal-divergence Model for a High-power Laser Diode (고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델)

  • Yong, Hyeon Joong;Baek, Young Jae;Yu, Dong Il;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.193-196
    • /
    • 2019
  • The design and control of thermal flow is important for the operation of high-power laser diodes (LDs). It is necessary to analyze and improve the thermal bottleneck near the active layer of an LD. As the error in prediction of the thermal resistance of an LD is large, typically due to the hyperbolic increase and saturation to linear increase of the thermal resistance as a function of thickness, it is helpful to use a simple, modified divergence model for the improvement and optimization of thermal resistance. The characteristics of LDs are described quite well, in that the values for simulated thermal resistance curves and the thermal cross section followed are almost the same as the values from the model function. Also, the thermal-cross-section curve obtained by differentiating the thermal resistance is good for identifying thermal bottlenecks intuitively, and is also fitted quite well by the model proposed for both a typical LD structure and an improved LD with thin capping and high thermal conductivity.

Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber (화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.546-555
    • /
    • 2019
  • The purpose of this study was to improve the performance of the bogie-type crematory, which is the mainstream of domestic crematory equipment. A field scale technology was investigated via increasing the volume by changing the shape of the furnace and reducing the cremation time and saving the energy usage through the optimization of burner combustion control. First, the optimized structural design through thermal flow analysis increases the volume of the main combustion chamber by about 70%, which increases the residence time of the combustion flue gas. A designed pilot crematory was then installed and the combustion behavior was tested under various operating conditions and the optimum operating plan was derived from for each furnace shape. Based on the results, the practically applicable crematory was designed and installed at Y crematorium in the P City. Optimal combustion conditions could be derived through operating the demonstration crematory furnace. The crematory time and fuel consumption could be minimized by increasing the energy efficiency by increasing the residence time of high temperature combustion flue gas. In other words, the crematory time and fuel consumption were 38 min and $21.8Nm^3$, respectively which were shortened by 44.1 and 54.4% lower than that of the existing crematory, respectively.

Regulatory Reform for Service Development (서비스발전을 위한 규제개혁의 새 패러다임)

  • Jeong, Ki-Oh
    • Journal of Service Research and Studies
    • /
    • v.6 no.3
    • /
    • pp.1-15
    • /
    • 2016
  • Despite that Korea has tried radical efforts in the global flow of regulatory reform in the past twenty years, the result was not radical at all, but rather disappointing. One examines the possibility of paradigm shift in regulatory reform based on new theoretic perspectives. Regulatory reform, one argues, is not just a neo-liberal approach to cut off overflowing regulation. It is a highly conflictual struggle in state order to move from industrial age paradigm to service age paradigm. In the process of the great shift states become integrated into the world of life constructed by the exercise of civil rights. The relation between the civic socio-economic life and the state apparatus became totally different. Past effort for deregulation missed this point without correct recognition of the role of civil freedom and rights in service economy. One treats three typical forms of regulation whereby conventional rules and regulations effectively damper the development of services: reciprocal perspective in contract management, industrial mind in urban and spaces design, and old way of human capital management. According these analyses a new initiative of regulatory reform is proposed to take place at the National Assembly.

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Language of Hope in Europe (유럽의 관점에서 조망하는 희망의 언어)

  • van Dijk-Groeneboer, Monique;Opatrny, Michal;Escher, Eva
    • Journal of Christian Education in Korea
    • /
    • v.65
    • /
    • pp.29-54
    • /
    • 2021
  • In Europe, the diversity in religions, cultures, languages and historical backgrounds is enormous. World War II and the Soviet Regime have played a large part in this and the flow of refugees from other continents increases the pluralism. How can religious education add to bridging between differences? The language across European countries is different, literally between countries, but also figuratively speaking and even inside individual countries. These differences occur in cultural sense and across age groups as well. Secondary education has the task to form young people to become firmly rooted people who can hold their own in society. It is essential that they learn to examine their own core values and their roots. Recognising their values should be a main focus of religious education. However, schools are currently accommodating increasing numbers of non-religious pupils. What role do religious values still play in this situation? How do pupils feel about active involvement in religious institutions, and about basing life choices on religious beliefs? Can other, non-religious values be detected which could form the basis for value-oriented personal formation? Research of these subjects has been ongoing in the Netherlands for more than twenty years and is currently being expanded to the Czech Republic and(former East) Germany. These are also secularized countries but have a very different history. Does the history and context of these countries play a role, and does this show in the values that are important to pupils? A comparative pilot study is being conducted as start of this broadening perspective geared towards greater insight into the values of pupils in these three European countries. This information helps to design appropriate new forms of religious value-oriented worldview education.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.

A tool development for forced striation and delineation of river network from digital elevation model based on ModelBuilder (모델빌더 기반 하천망의 DEM 각인 및 추출 툴 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.515-529
    • /
    • 2019
  • Geospatial information for river network and watershed boundary have played a fundamental roles in terms of river management, planning and design, hydrological and hydraulic analysis. Irrespective of their importance, the lack of punctual update and improper maintenance in currently available river-related geospatial information systems has revealed inconsistency issues between individual systems and spatial inaccuracy with regard to reflecting dynamically transferring riverine geography. Given that digital elevation models (DEMs) of high spatial resolution enabling to reproduce precise river network are only available adjacent to national rivers, DEMs with poor spatial resolution lead to generate unreliable river network information and thereby reduce their extensible applicabilities. This study first of all evaluated published spatial information available in Korea with respect to their spatial accuracy and consistency, and also provides a methodology and tool to modify existing low resolution of DEMs by means of striation of conventional or digitized river network to replicate input river network in various degree of further delineation. The tool named FSND was designed to be operated in ArcGIS ModelBuilder which ensures to automatically simulate river network striation to DEMs and delineation with different flow accumulation threshold. The FNSD was successfully validated in Seom River basin to identify its replication of given river network manually digitized based on recent aerial photograph in conjunction with a DEM with 30 meter spatial resolution. With the derived accuracy of reproducibility, substantiation of a various order of river network and watershed boundary from the striated DEM posed tangible possibility for highly extending DEMs with low resolution to be capable of producing reliable riverine spatial information subsequently.