• Title/Summary/Keyword: Design engineer

Search Result 602, Processing Time 0.026 seconds

A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics (복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구)

  • 이영신;전병희;오재문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

A Study on Automation of Connection Design in Integrated System for Steel Structures (철골 구조설계 통할 시스템에서 접합부 설계 자동화에 관한 연구)

  • 김재동;천진호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.397-404
    • /
    • 2000
  • The research of the computer-aided analysis and design of steel structures has continuously evolved. Despite the importance of connection in steel structures, the design process of connections is inefficient in present. The purpose of this study is to help engineer in connection design process. In this paper, prototype of automatic connection design module in integrated system for steel structures is proposed. The main methodology is based on bottom-up approach to simplify and formalize product model. Expert system is used to help engineer for selecting steel connection type. Object-oriented analysis and modeling will improve the expansion of knowledge-base. The design for connection was done according to the design specifications of connections of AISC

  • PDF

An application of a Knowledge-Based System for Structural Planning (구조계획에서의 지식기반시스템 도입연구)

  • 김상철;김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.137-144
    • /
    • 1994
  • This study describes an application of a knowledge-based system for a part of the development of an integrated structural design system. In preliminary structural design procedure, most structural design operation are performed by structural engineer's manual method. These lack of systematic operation hampers the effective system integration. By introducing expert system to the structural planning stage, structural engineer can automate structural Planning process of an integrated structural design system for complex design. Engineering data management is receiving increasing attention due to complexity of information necessary for performing structural engineering operations. So, in this paper, we describe a methodology for automating conceptual structural design and developing a knowledge-based system integrated with database. At the end, we use an implemented example to support our methodology.

  • PDF

Development of supporting Modules for parameter and knowledge management using CATIA KW (CATIA KW의 변수 및 지체 관리를 위한 지원 모듈 개발)

  • Ju S.S.;Bae I.J.;Lee S.H.;Jeon C.M.;Chang J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.635-636
    • /
    • 2006
  • A knowledge-based system with CAD is widely used to implement a designer's know-how and a routine calculation within a system. An engineer needs to change several design parameters in an early design stage. However it is not easy to change the design parameters when it needs to update an existing model and data. In this paper, a module has been proposed to make it easy to change the design parameter so that the engineer can easily update and change the design model. Also a flexible interface of the module can easily add or extract the design knowledge.

  • PDF

Seismic Performance Evaluation of Existing Buildings with Engineer-oriented Computerized System (엔지니어기반 전산시스템을 적용한 철근콘크리트 기존 건축물의 내진성능평가)

  • Hwang, Sunwoo;Kim, Dong-Yeon;Kim, Taejin;Kim, Kyungtae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Nonlinear analysis for seismic performance evaluation of existing building usually takes 4~5 times more than linear analysis based on KBC code. To obtain accurate results from the nonlinear analysis, there are a lot of things to be considered for nonlinear analysis modeling. For example, reinforcing layout, applied load and seismic details affect behavior of structural members for the existing building. Engineer-oriented computerized system was developed for engineers to evaluate effective seismic performance of existing buildings with abiding by seismic design principles. Using the engineer-oriented program, seismic performance evaluation of reinforced concrete building was performed. Nonlinear hinge properties were applied with real time multiple consideration such as section layout, section analysis result, applied load and performance levels. As a result, the building was evaluated to satisfy LS(Life Safety) performance level. A comparison between engineer-oriented and program-oriented results is presented to show how important the role of structural engineer is for seismic performance evaluation of existing buildings.

A Design of Curriculum Considered Experimental Design & Analysis for Enhancing Engineer's Problem-Solving Ability (공학자의 문제해결능력 향상을 위한 실험계획 및 분석을 적용한 교육과정의 설계 -기계공학계열의 학과를 중심으로-)

  • Lee, Joong-Soon;Kwak, Hyo-Yean
    • Journal of Engineering Education Research
    • /
    • v.11 no.1
    • /
    • pp.34-47
    • /
    • 2008
  • The purpose of this paper is to design the curriculum by considering the experimental design and analysis for enhancing an engineer's creative problem-solving ability. This ability is one of the important objectives in modern engineering education. To achieve this purpose, first, it is suggested that the experimental design and analysis, a specific area of engineering education, is highly relevant to the creative problem-solving ability, one of the basic engineering competencies and of the final goals in engineering education. And also, the curriculum already introduced the experimental design and analysis in departments of mechanical engineering of universities are surveyed and reviewed. 59 papers are also analyzed to know how engineers applicate the knowledge of the experimental design and analysis to their activities. Finally, the module of engineering education curriculum introduced the experimental design and analysis to enhance effectively the engineer's creative problem-solving ability is suggested.