• Title/Summary/Keyword: Design complexity

Search Result 1,997, Processing Time 0.024 seconds

An efficient multi-objective cuckoo search algorithm for design optimization

  • Kaveh, A.;Bakhshpoori, T.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.87-103
    • /
    • 2016
  • This paper adopts and investigates the non-dominated sorting approach for extending the single-objective Cuckoo Search (CS) into a multi-objective framework. The proposed approach uses an archive composed of primary and secondary population to select and keep the non-dominated solutions at each generation instead of pairwise analogy used in the original Multi-objective Cuckoo Search (MOCS). Our simulations show that such a low computational complexity approach can enrich CS to incorporate multi-objective needs instead of considering multiple eggs for cuckoos used in the original MOCS. The proposed MOCS is tested on a set of multi-objective optimization problems and two well-studied engineering design optimization problems. Compared to MOCS and some other available multi-objective algorithms such as NSGA-II, our approach is found to be competitive while benefiting simplicity. Moreover, the proposed approach is simpler and is capable of finding a wide spread of solutions with good coverage and convergence to true Pareto optimal fronts.

Design Issues of Spectrum Sensing in Cognitive Radio Networks

  • Kang, Bub-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.166-171
    • /
    • 2011
  • This paper investigates the design issues of spectrum sensing in the cognitive radio (CR) networks of opportunistic unlicensed spectrum access. The cognitive radios can perform a communication using the incumbent user spectrum band without the interference caused by the cognitive radio users. In this case, the cognitive radios must know the real-time radio environments of the incumbent user spectrum band using the spectrum sensing, beacon signal, and geo-location database access. Then in this paper, we are going to provide spectrum sensing issues which include the sensing techniques, the regulatory requirements, the analysis of DTV detection threshold, and main considerations associated with the spectrum sensing design in cognitive radio systems. Also, this paper introduces design trade-offs in order to optimize the sensing parameters such as sensing time and sensing complexity.

Preliminary Design Program for a High Thrust Liquid Rocket-Engine : Components Design for Static Performance Design (대추력 액체로켓엔진 예비설계 프로그램 : 정상성능 설계를 위한 구성품 모델링)

  • Ko, Tae-Ho;Kim, Sang-Min;Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.414-416
    • /
    • 2009
  • In order to build a transient simulation program for a high thrust liquid rocket engine(LRE), a static performance simulation program for components were made. The components were the thrust chamber (combustion chamber and supersonic nozzle), centrifugal pump (impeller and volute casing), impulse turbine, and flow control devices (control valve and orifice). Simplified mathematical models based on classical thermodynamic and inviscid theories were used to remove complexity and enhance the utility of the program. We examined the results of each program qualitatively for validate each component modeling.

  • PDF

APPROXIMATE ANALYSIS OF AN N-DESIGN CALL CENTER WITH TWO TYPES OF AGENTS

  • Park, Chul-Geun;Han, Dong-Hwan;Baik, Kwang-Hyun
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1021-1035
    • /
    • 2008
  • In this paper, we analyze an N-design call center with skill-based routing, in which one pool of agents handles two types of calls and another pool of agents handles only one type of calls. The approximate analysis is motivated by a computational complexity that has been observed in the direct stochastic approach and numerical method for finding performance measures. The workforce staffing policy is very important to the successful management of call centers. So the allocation scheduling of the agents can be considered as the optimization problem of the corresponding queueing system to the call center. We use a decomposition algorithm which divides the state space of the queueing system into the subspaces for the approximate analysis of the N-design call center with two different types of agents. We also represent some numerical examples and show the impact of the system parameters on the performance measures.

  • PDF

Application of Fractal Geometry to Architectural Design

  • Lee, Myung-Sik
    • Architectural research
    • /
    • v.16 no.4
    • /
    • pp.175-183
    • /
    • 2014
  • Contemporary architecture tends to deconstruct modern architecture based on rationalization just like reductionism and functionalism and secedes from it. It means change from mechanical to organic and ecological view of the world. According to these changes, consideration of a compositive relationship presented variety and complexity in architecture. Thus, the modern speculation based on rationalism cannot provide an alternative interpretation about complicated architectural phenomena. At this point in time, the purpose of this study is to investigate the possibilities of the fractal as an alternative tool of analysis and design in contemporary architecture. In this study, two major aspects are discussed. First, the fractal concepts just like 'fractal dimension', 'box-counting dimension' and 'fractal rhythm' can be applied to analysis in architecture. Second, the fractal formative principles just like 'scaling', 'superimposition trace', 'distortion' and 'repetition' can be applied to design in architecture. Fractal geometry similar to nature's patterned order can provide endless possibilities for analysis and design in architecture. Therefore further study of fractal geometry should be conducted synthetically from now on.

Virtual Models for 3D Printing

  • Haeseong Jee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • surface texture denotes set of tiny repetitive geometric features on an object surface. 3D Printing can readily create a surface of controlled macro-textures of high geometric complexity. Designing surface textures for 3D Printing, however, is difficult due to complex macro-structure of the tiny texture geometry since it needs to be compatible with the non-traditioal manufacturing method. In this paper we propose a visual simulation technique involving development of a virtual model-an intermediate geometric model-of the surface texture design prior to fabricating the physical model. Careful examination of the virtual model before the actual fabrication can help minimize unwanted design iterations. The proposed technique demonstrated visualization capability by comparing the virtual model with the physical model for several test cases.

  • PDF

A Study on the Comparison of Performances between Section Property Method and Section Shape Method for the Section Design of Vehicle Structure (차체단면설계를 위한 단면계수법 및 단면형상법의 성능비교에 관한 연구)

  • 서명원;이정환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.135-147
    • /
    • 2000
  • Section design of vehicle structure has been developed by two methods. One is the section property method which uses section property as a design variable. This method shows the tendency of an optimum section approximately. The other method is the section shape method which utilizes geometric parameter of section as a design variable. Practical solutions are obtained by this method. However, it is very expensive for large-scale problems due to the large number of geometric parameters. These two methods are compared through several sample problems. The finite element method is used for the structural and sensitivity analyses. The results are analyzed based on the number of function evaluations, the quality of cost function, the complexity of programing, and etc. The applications of both methods are also discussed.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

Seismic Design Provisions and Revisions to the Guides for RC Flat Plate Systems in the US (미국에서의 RC무량판 내진설계기준과 개정 방향)

  • Kang, Thomas H.K.;Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.25-36
    • /
    • 2008
  • Seismic design of reinforced concrete flat plate structures is often complicated as it deals with three dimensionality and continuous spans, and mostly material complexity and reinforcement variation. A great degree of uncertainty in such structural and material properties is thus inherent in the RC flat plate systems, and hinders simplification of the design process in terms of slab flexure, unbalanced moment transfer at a slab-column connection, and punching shear. For these reasons, there have been substantial changes and updates in building codes relating to flat plates and slab-column connections over a handful of decades. Also, for the same reason, some of codes never have been revised. As a consequence of nonsimultaneous development of each provision, it tends to confuse structural engineers when using a mixture of all different US code provisions. In this paper, in the step-by-step logical order, seismic design of the RC flat plate systems is re-organized and clarified to make it easier to apply. Furthermore, recent changes or proposed changes are introduced, and are explained as to how it will apply in practice.

Optimization Design Method for Inner Product Using CSHM Algorithm and its Application to 1-D DCT Processor (연산공유 승산 알고리즘을 이용한 내적의 최적화 및 이를 이용한 1차원 DCT 프로세서 설계)

  • 이태욱;조상복
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.86-93
    • /
    • 2004
  • The DCT algorithm needs an efficient hardware architecture to compute inner product. The conventional design method, like ROM-based DA(Distributed Arithmetic), has large hardware complexity. Because of this reason, a CSHM(Computation Sharing Multiplication) was proposed for implementing inner product by Park. However, the Park's CSHM has inefficient hardware architecture in the precomputer and select units. Therefore it degrades the performance of the multiplier. In this paper, we presents the optimization design method for inner product using CSHM algorithm and applied it to implementation of 1-D DCT processor. The experimental results show that the proposed multiplier is more efficient than Park's when hardware architectures and logic synthesis results were compared. The designed 1-D DCT processor by using proposed design method is more high performance than typical methods.