So far, the behaviors of Web users have been predicted or analyzed mostly by their demographic characteristics or by considering in which context they gain access to that. But now there is a question about whether those characteristics are the only factors to trigger their use of Web. If the answer is not affirmative, what types of additional factors could cause such an action and how they characterize it should be discussed. User profile information has been considered one of the crucial elements to define user characteristics in user-centered UI design sector, and in order to apply it to UI design, it's needed to meditate on the above-mentioned questions. In this study, it's first attempted to have a good understanding of the users of different media and to review existing user classification methods. Next, user classification variables and relevant scales were prepared to sort out users according to their type of using Web, and case study was conducted to identify the behavioral characteristics of users and classify them according to their behavioral features. Finally, the user profile features of individual user groups were figured out based on data that were gathered by making an experiment, and data mapping was fulfilled between the behavioral characteristics and user profile characteristics to find out what types of behaviors were caused by the characteristics of user profile. As a result, it's found that user characteristics could have an impact on not only their general information and relevant contexts but their attitude of using different media and personality type. There were some problems with the experimental design, but more accurate information on the relationship of user behaviors to user profile characteristics will be obtained if those problems are eliminated. As user behaviors could be predicted only by user profile characteristics, user classification is expected to make a contribution to enhancing the efficiency of UI design.
Tumay, Mehmet T.;Abu-Farsakh, Murad Y.;Zhang, Zhongjie
Proceedings of the Korean Geotechical Society Conference
/
2008.03a
/
pp.1466-1483
/
2008
This paper discusses the development of an up-to-date computerized CPT (Cone Penetration Test) based soil engineering classification system to provide geotechnical engineers with a handy tool for their daily design activities. Five CPT soil engineering classification systems are incorporated in this effort. They include the probabilistic region estimation and fuzzy classification methods, both developed by Zhang and Tumay, the Schmertmann, the Douglas and Olsen, and the Robertson et al. methods. In the probabilistic region estimation method, a conformal transformation is used to determine the soil classification index, U, from CPT cone tip resistance and friction ratio. A statistical correlation is established between U and the compositional soil type given by the Unified Soil Classification System (USCS). The soil classification index, U, provides a soil profile over depth with the probability of belonging to different soil types, which more realistically and continuously reflects the in-situ soil characterization, which includes the spatial variation of soil types. The CPT fuzzy classification on the other hand emphasizes the certainty of soil behavior. The advantage of combining these two classification methods is realized through implementing them into visual basic software with three other CPT soil classification methods for friendly use by geotechnical engineers. Three sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the probabilistic region estimation and fuzzy classification methods are cross-correlated with conventional soil classification from borings logs and three other established CPT soil classification methods.
Journal of Korean Library and Information Science Society
/
v.21
/
pp.459-483
/
1994
The purpose of the study is to design and implement a prototype expert system for library classification in the literature field of the DDC 20. The system was largely consisted of a knowledge base, an inference engine, a knowledge acquisition facility, an explanation facility and an user interface facility. The knowledge base was represented by inference rules and frames. The name file for authors and titles was designed separately. The forward chaining technique was chosen for the inference engine and the menu-driven dialog technique was also taken for the user interface. The conclusions of the study can be summarized as follows: 1) The difficulty of document classification work is due to the complex and stringent classification rules. Such problems can be considerably alleviated by using the present system. 2) Even the novice with a knowledge about the DDC 20 can easily access the system. And also librarian other than the professional classifier can easily be accustomed to the classification work. 3) The system can be used as an online classification scheme. 4) By adding any local language other than English or Hangeul on the menu screen, the language problem relating classification can be overcome. 5) The system can be employed as the intensification tool for the education of classification as well as library automation.
Journal of Korean Library and Information Science Society
/
v.19
/
pp.35-57
/
1992
This study is an attempt to provide some helpful data for the design and the implementation of the expert system for the book-classification based on the analysis of various cases of the classification-expert system models. Following the introduction, the concepts and some features of an expert system were overviewed in the second chapter, on the basis of which the following concrete cases were introduced and analyzed in the third chapter : (1) ACN System for NC, (2) Expert System for NDC, (3) Expert System for UDC, (4) Herba Medica System, (5) Expert System for IPC, (6) Stratcyclode Project, (7) Expert System for Classification of INIS Database, (8) AutoBC System, and etc. In the conclusion, for the development of the classification-expert system, it was turned out that constructing a new system by using an AI language such as Prolog or LISP is more desirable than employing any one of expert system shells. Together it is necessary for the following requirements to be met : (1) The subject concept of a document elicited should be accurate. (2) Not only a domain knowledge but also the knowledge covering all the subjects should be represented in the knowledge-bases. (3) The knowledge-bases should be organized in such a way that the characteristics of the knowledge about classification should be well defined. (4) rule-base consisting of accurate rules about classification should be made. (5) It should be possible for classification code wanted to be generated immediately.
In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.
In this paper, a new distributed parallel algorithm for pattern classification based upon Self-Organizing Neural Network(SONN)[10-12] is developed. This system works without any information about the number of clusters or cluster centers.
The SONN model showed good performance for finding classification information, cluster centers, the number of salient clusters and membership information.
It took a considerable amount of time in the sequential version if the input data set size is very large. Therefore, design of parallel algorithm is desirous. A new distributed parallel algorithm is developed and experimental results are presented.
Communications for Statistical Applications and Methods
/
v.2
no.1
/
pp.74-88
/
1995
This article introduces a unified method of choosing the most explanatory and significant multiway partitions for classification tree design and analysis. The method is derived on the impurity reduction (IR) measure of divergence, which is proposed to extend the proportional-reduction-in-error (PRE) measure in the decision-theory context. For the method derivation, the IR measure is analyzed to characterize its statistical properties which are used to consistently handle the subjects of feature formation, feature selection, and feature deletion required in the associated classification tree construction. A numerical example is considered to illustrate the proposed approach.
This study aims to establish the standards to give the design weight in case when developing equipment designs, by classifying products with similar purposes in accordance with the morphological characteristics and also extracting the typicality. Limiting the sampling group for the extraction of the typicality to a pendant-type and a ceiling buried-type through the preceding case study and consultation with experts, the survey was conducted for majors and relevant workers in six cities, sampling products released in Korea and Japan before May 2016. The 1st survey was about the Morphological classification, and the 2nd times about the extraction of the typicality while the 3rd one was about the classification of the morphological attributes. By drawing the design attributes based on the functional/morphological classification and formative principles, it aimed to establish the base of the future research on the measurement of design weight. The results of this study aim to efficiently establish the roles of design technology in accordance with changes in the lighting fixture market caused by the substitution of light sources, and also to draw the development direction to rapidly cope with the accelerated changes in lighting design types and corporate R&D.
JSTS:Journal of Semiconductor Technology and Science
/
v.12
no.2
/
pp.162-167
/
2012
This paper describes the design of a high-performance unified SVM classifier circuit. The proposed circuit supports both linear and non-linear SVM classifications. In order to ensure efficient classification, a 48x96 or 64x64 sliding window with 20 window strides is used. We reduced the circuit size by sharing most of the resources required for both types of classification. We described the proposed unified SVM classifier circuit using the Verilog HDL and synthesized the gate-level circuit using 65nm standard cell library. The synthesized circuit consists of 661,261 gates, operates at the maximum operating frequency of 152 MHz and processes up to 33.8 640x480 image frames per second.
Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.