• Title/Summary/Keyword: Design and Analysis of Computer Experiments

Search Result 236, Processing Time 0.025 seconds

Design and Fabrication of an Implantable Microphone for Reduction of Skin Damping Effect through FEA Simulation (피부에 의한 이득 감쇠를 줄이기 위한 FEA 시뮬레이션 기반의 이식형 마이크로폰 설계 및 구현)

  • Han, Ji-Hun;Kim, Min-Woo;Kim, Dong-Wook;Seong, Ki-Woong;Cho, Sung-Mok;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Nowadays, implantable hearing aids have been developed to solve the problems of conventional hearing aids. In case of fully implantable hearing aids, an implantable microphone is necessary to receive sound signal beneath the skin. Normally, an implantable microphone has poor frequency response characteristics in high frequency bands of acoustic signal due to the high frequency attenuation effect of skin after implantation to human body. In this paper, the implantable microphone is designed to reduce the high frequency attenuation effect of a skin by putting its resonance frequency at the attenuated range through a finite element analysis (FEA) simulation. The designed implantable microphone through the simulated results has been fabricated by manufacturing process using bio-compatible materials. By the several in-vitro experiments with pig skin, it has been verified that the designed implantable microphone has a resonance frequency around the starting part of the attenuated range and reduces the attenuation effect.

Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics (전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석)

  • Jongil, Han;SungSoo, Park;InJea, Kim;Kwangho, Na
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

Experiments on decision tree analysis for four-peg tower of Hanoi (4 개의 기둥을 가진 하노이의 탑에 대한 결정 트리 생성 실험)

  • Kang, Dae-Ki;Choi, Jae-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.171-172
    • /
    • 2011
  • In this research, we discuss the process of analyzing the solution of four-peg tower of Hanoi using protocol analysis technique, and of developing decision trees from the analyzed contents. For these, we design and implement a computer program that can simulate four-peg tower of Hanoi. The implemented program generates a certain regular-to-regular tower of Hanoi problem, let a user to solve the problem, and records the solution process. From the process by the implemented program and the recorded protocol, we can build the decision tree for the solution. We expect this research can contribute to find a non-optimal solution for n-peg tower of Hanoi.

  • PDF

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.

Waterhammer in the Transmission Pipeline with an Air Chamber (에어챔버가 설치된 송수관로에서의 수격현상)

  • Kim, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Designs of MBL-based Software Convergence for the Scientific Experiment by means of Education Tools (MBL기반 소프트웨어 융합형 과학실험교구 설계)

  • Son, Min-Woo;Ju, Yeong-Tae;Kim, Jong-Sil;Yoo, Seung-Hyeok;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.765-772
    • /
    • 2020
  • Currently, general educational science experiment teaching aids cannot be accurately measured, and even MBL experiment teaching aids consist of sensor-oriented programs that is difficult to actively design experiments by focusing only on securing data. This study envisioned a science experiment parish system capable of software convergence experiment design through curriculum analysis, and designed the entire system architecture, frame, and mechanism of MBL-based science experiment parish system by supplementing the limitations of the existing experiment.

Design of a Disaster Big Data Platform for Collecting and Analyzing Social Media (소셜미디어 수집과 분석을 위한 재난 빅 데이터 플랫폼의 설계)

  • Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Nguyen, Giang-Truong;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.661-664
    • /
    • 2017
  • Recently, during disasters occurrence, dealing with emergencies has been handled well by the early transmission of disaster relating notifications on social media networks (e.g., Twitter or Facebook). Intuitively, with their characteristics (e.g., real-time, mobility) and big communities whose users could be regarded as volunteers, social networks are proved to be a crucial role for disasters response. However, the amount of data transmitted during disasters is an obstacle for filtering informative messages; because the messages are diversity, large and very noise. This large volume of data could be seen as Social Big Data (SBD). In this paper, we proposed a big data platform for collecting and analyzing disasters' data from SBD. Firstly, we designed a collecting module; which could rapidly extract disasters' information from the Twitter; by big data frameworks supporting streaming data on distributed system; such as Kafka and Spark. Secondly, we developed an analyzing module which learned from SBD to distinguish the useful information from the irrelevant one. Finally, we also designed a real-time visualization on the web interface for displaying the results of analysis phase. To show the viability of our platform, we conducted experiments of the collecting and analyzing phases in 10 days for both real-time and historical tweets, which were about disasters happened in South Korea. The results prove that our big data platform could be applied to disaster information based systems, by providing a huge relevant data; which can be used for inferring affected regions and victims in disaster situations, from 21.000 collected tweets.

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

P-value significance level test for high-performance steel fiber concrete (HPSFC)

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin;Marar, Khaled
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2018
  • Statistical analysis has found useful application in the design of experiments (DOE) especially optimization of concrete ingredients however, to be able to apply the concept properly using computer aided applications there has to be an upper and lower limits of responses fed to the system. In this study, the production of high-performance steel fiber concrete (HPSFC) at five different fiber addition levels by volume with two aspect ratios of 60 and 83 were studied under two curing methods completely dry cured (DC) and moist cured (MC) conditions. In other words, this study was carried out for those limits based on material properties available in North Cyprus. Specimens utilized were cubes 100 mm size casted and cured for 28 days and tested for compressive strength. Minitab 18 statistical software was utilized for the analysis of results at a 5 per cent level of significance. Experimentally, it was observed that, there was fluctuation in compressive strength results for the two aspect ratios and curing regimes. On the other hand P-value hypothesis evaluation of the response showed that at the stated level of significance, there was a statistically significant difference between dry and moist curing conditions. Upper and lower limit values were proposed for the response to be utilized in DOE for future studies based on these material properties. It was also suggested that for a narrow confidence interval and accuracy of the system, future study should increase the sample size.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: I. Experiments and Analyses (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : I. 실험 및 해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Kang, Hyeong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.339-349
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of circular reinforced concrete bridge piers with confinement steel and to provide the data for developing improved seismic design criteria. Fourteen circular reinforced concrete bridge piers were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. In the companion paper, the proposed numerical method for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel is verified by comparison with experimental results.