• Title/Summary/Keyword: Design and Analysis

Search Result 48,024, Processing Time 0.066 seconds

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

Statistical Performance Estimation of a Multibody System Based on Design Variable Samples (설계변수 표본에 근거한 다물체계 성능의 통계적 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

A Study on Taguchi and VTA Methods for Product Design (제품설계를 위한 다구찌 방법과 VTA방법에 관한 연구)

  • 장현수;김용범;김우열
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Taguchi and VTA(variation Transmission Analysis) methods have been widely used recently as new methods for product design. In this study, Taguchi method using analysis of variance and VTA method using regression analysis are reviewed and compared with each other in terms of parameter design and tolerance design. In analysis of variance, variation of quality characteristics arises from noise factors, therefore the optimal levels of design factors are selected to minimize the effect of noise factors. n regression analysis, variation of quality characteristics arises from variation of each own design factors. As a method to reduce variation of these quality characteristics, sensitivity analysis was performed for each design factors. An example of calculating tolerance interval for the given defect rate in PPM is also introduced. Especially, the new method is suggested to increase the estimation accuracy of variation of quality characteristics through regression analysis.

  • PDF

Analysis and Design of a Motor Driven Tilt/Telescopic Steering Column for Safety Improvement (안전도를 고려한 전동 틸트/텔레스코픽 조향주의 해석 및 설계)

  • Sin, Mun-Gyun;Hong, Seong-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1479-1490
    • /
    • 2000
  • The design process of the motor driven tilt/telescopic steering column is established by axiomatic design approach in conceptual design stage. By selecting independent design variables for improvin g performance of the steering system, each detailed design can be carried out independently. In the detailed design, the safety in crash environment and vibration reduction are considered. An occupant analysis code SAFE(Safety Analysis For occupant crash Environment) is utilized to simulate the body block test. Segments, contact ellipsoids and spring-damper elements are used to model the steering column in SAFE. The model is verified by the result of the body block test. After the model is validated, the energy absorbing components are designed using an orthogonal array. Occupant analyses are performed for the cases of the orthogonal array. Final design is determined for the minimum occupant injury. For vibrational analysis, a finite element model of the steering column is defined for the modal analysis. The model is validated by the vibration experiment. Size and shape variables are selected for the optimization process. An optimization is conducted to minimize the weight subjected to various constraints.

Cost-effectiveness Analysis for Clothing Design Improvement Using Ergonomic Methods: Evaluation of Flame-proof Clothing and Design Optimization (의복 개선 설계의 비용 대비 인간공학적 효과 분석: 방연복의 평가 및 최적 설계 도출)

  • Cho, Ja-Young;Jeong, Jung-Rim;Yeon, Soo-Min;Chang, Joon-Ho;You, Hee-Cheon;Kim, Hee-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.45-58
    • /
    • 2008
  • Ergonomic techniques have been required to analyze the effectiveness of functional clothing design improvement in a systematic and analytic manner. The goals of the present study are to: (1) comprehensively and analytically examine the effectiveness of clothing improvement by using the relationship analysis between clothing design components (D) and ergonomic evaluation measures (E) and (2) prove the usefulness of cost-effectiveness analysis for clothing design optimization. The cost effectiveness analysis is comprised of the preliminary evaluation based on expertise and the in-depth evaluation where the D-E relationship analysis is applied. As a result of the cost effectiveness analysis applied to flame-proof clothing, an optimal design was identified by analyzing costs and qualitative/quantitative effects. In the preliminary evaluation, the expected effectiveness of each design alternative on wear efficiency and wear comfort was estimated. In the in-depth evaluation, however, the effectiveness of each design alternative was analyzed by quantitative evaluation in a wearing test using a questionnaire prepared based on the D-E relationship analysis. It was concluded that the D-E relationship analysis and the cost-effectiveness analysis are useful for comprehensive evaluation and optimization of functional clothing design.

A Aerodynamic Design of Mixed Flow Turbine of the Marine Turbocharger (박용 터보챠저 사류 터빈의 공력설계)

  • Kim, Hong-Won;Oh, Kook-Taek;Ghal, Sang-Hak;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.670-675
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for turbine of the marine middle engine turbocharger. The performance characteristics of turbocharger turbine are investigated at various operating conditions using mass flow rate and computational flow analysis for rotor and nozzle at design point are performed. Preliminary design results are performed by applying mean line and radial equilibrium theory. Performance prediction and flow analysis results show good agreement with experiments. From 3 dimensional flow analysis result, efficiency is 0.6% greater than design point. Therefore, this design approach is useful for preliminary design, and helps to increase the design capability for optimized rotor blade.

  • PDF

A universal design method using 3 Point task analysis and 9 universal design items

  • Yamaoka, Toshiki
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.63-72
    • /
    • 2002
  • In order to examine universal design, 1 have developed two analytical methodologies based on 3P(point) task analysis: structured task analysis and task matrix analysis. I also extracted nine universal design items, namely (1) adjustment, (2) redundancy, (3) specification and function transparency, (4) feedback and (5) error tolerance, (6) effective acquisition of information, (7) ease of understanding and judgment, (8) comfortable operation, and (9) continuity of information and operation. Structured task analysis is used to uncover problems in each of the tasks constituting a job for each functionally challenged condition of users, and solutions to the extracted problems are examined in terms of the above-mentioned nine universal design items. Task matrix analysis calls for the production of a table for each task in a job. In each table, nine items form the columns, and the horizontal rows list all disability types. Then, solutions are formulated for each cell formed by the intersecting columns and rows. Using these two analysis methods, 1 have conducted a verification experiment for the universal design of a public bus. The results of the research have enabled me to propose various ,solutions from a system-based perspective, instead of coming up with the superficial and isolated solutions which are normally produced when conventional analytical methods are used.

  • PDF

Development of Analysis Model and Sensitivity Analysis for High-Power Hydraulic Drifter Design (고출력 유압 드리프터 설계를 위한 해석모델 개발 및 민감도 분석)

  • Noh, Dae-Kyung;Lee, Dae-Hee;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of the present study is to develop an analysis model to analyze the design parameter sensitivity of a high-power drifter suitable for implementation in Korean hydraulic drills. This study aims to establish a basis for the optimization of the impact performance and stability of a high-power drifter by investigating the effects of each design parameter on the impact performance via design parameter sensitivity analysis. To begin, an analysis model of drifter dynamics is developed, and the reliability of the analysis model is verified by comparing the analysis results to the experimental results. The drifter is then redesigned for compatibility with Korean hydraulic drills. Finally, design parameter sensitivity analysis of the redesigned drifter is conducted to determine the effects of the design parameters on the impact performance, and to extract the high-sensitivity parameters. SimulationX, which is multi-physics analysis software, is used to develop the analysis model, and EasyDesign is employed for design parameter sensitivity analysis.

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicle Cab (통계적 에너지 해석 모델을 이용한 건설 장비 차실 설계에 관한 연구)

  • 채장범
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.609-615
    • /
    • 1998
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis(DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Design Analysis System for Dieface of Stamping Press Dies (스탬핑 프레스 금형 다이페이스 설계 해석 시스템)

  • 금영탁;정승훈;이완우;박성일;김준환
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.567-573
    • /
    • 2000
  • An analysis system for evaluating the design of dieface of stamping press dies is developed. The die design analysis system interfaced with CATIA via universal or NASTRAN data format provides the design information such as binder-wrap, punch contact status, section length change ratio, wrinkle symptom etc., which are crucial in predicting the defects of initial shape of the sheet in the dieface design stage. The graphic post-processor of developed system which displays 3-dimensional shapes of tool and die and analysis results, helps the interpretation of design evaluation. The dieface design analysis system was tested in draw dies of front floor panel and quarter panel of auto-body in order to verify the usefulness and validity of the system The examples show that the developed system would be a good tool in evaluating dieface designs.

  • PDF