• Title/Summary/Keyword: Design Window

Search Result 980, Processing Time 0.026 seconds

Predicting Noise inside a Trimmed Cavity Due to Exterior Flow (외부 유동에 의한 흡차음재 공간내의 소음 예측)

  • Jeong, ChanHee;Ganty, Bastien;Choi, EuiSung;Cho, MunHwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.466-471
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using PowerFlow. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran. Additionally in order to validate the numerical process, an experimental set-up has been created based on the simplified vehicle. The vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

The Design and Performance Verification of Real-Time Inspection Equipment Software based on Windows Operating System (윈도우 운영체제 기반의 실시간 점검장비 소프트웨어 설계 및 성능검증)

  • Kim, Hyo-Joung;Heo, Yong-Kwan;Kwon, Byung-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.1-8
    • /
    • 2017
  • As the recent advancement of military equipment has been accelerated, it is becoming more important to act as an inspection device that verifies the performance of equipment in real time. Most of the inspection equipments were developed on the Windows OS based system. considering development convenience and development period. However, sice the data communication between these models occurs asynchronously, there is a problem that it is difficult to guarantee real-time performance of the window-based inspection equiment. To solve these problems, we use real-time commercial solutions to guarantee the real-time performance of Windows-based inspection equipment. In this paper, we propose a method of designing and implementing the inspection equipment software based on Real-Time implanted Kernel-Multi Processor (RTiK-MP) operating in Windows environment. In addition, real-time performance data accuracy was measured through a high-speed communication tool and interlocking test to verify the performance of the inspection device based on the real-time porting kernel.

A STUDY OF THERMAL ANALYSIS OF KAONICS (적외선 카메라 KAONICS의 열해석)

  • Kang, Ji-Na;Lee, Sung-Ho;Jin, Ho;Park, Soo-Jong;Moon, Bong-Kon;Kim, Sang-Ho;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.467-480
    • /
    • 2004
  • It is very important to eliminate thermal background radiation for the near infrared camera system such as KAONICS (KAO Near Infrared Camera System). Thermal background radiations which come from window and cryostat wall influence IR detector and decrease IR system performance. Therefore the cold box which contains optics and detector housing must be cooled down to eliminate thermal background radiation. We carried out quantitative analysis to determine internal cooling temperature to reduce thermal noise in the J, H, Ks, and L bandpass. Additionally, we estimated the incoming heat load and then chose the cryocooler adequate to KAONICS's requirements. The cooling time and the final cooling temperature of the cold box were calculated. These results were also implemented to the system design.

Effects of the ESD Protection Performance on GPNS(Gate to Primary N+ diffusion Space) Variation in the NSCR_PPS Device (NSCR_PPS 소자에서 게이트와 N+ 확산층 간격의 변화가 정전기 보호성능에 미치는 영향)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.6-11
    • /
    • 2015
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different GPNS(Gate to Primary $N^+$ Diffusion Space) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device with FPW(Full P-Well) structure and non-CPS(Counter Pocket Source) implant shows typical SCR-like characteristics with low on-resistance(Ron), low snapback holding voltage(Vh) and low thermal breakdown voltage(Vtb), which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW(Partial P-Well) structure and optimal CPS implant demonstrate the improved ESD protection performance as a function of GPNS variation. GPNS was a important parameter, which is satisfied design window of ESD protection device.

Design and Implementation of Smart Healthcare Monitoring System Using Bio-Signals (생체 신호를 이용한 스마트 헬스케어 모니터링 시스템 설계 및 구현)

  • Yoo, So-Wol;Bae, Sang-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.417-423
    • /
    • 2017
  • This paper intend to implement monitoring systems for individual customized diagnostics to maintain ongoing disease management to promote human health. Analyze the threshold of a measured biological signal using a number of measuring sensors. Performance assessment revealed that the SVM algorithm for bio-signal analysis showed an average error rate of 2 %. The accuracy of the classification is 97.2%, and reduced the maximum of 19.2% of the storage space when you split the window into 5,000 pieces. Out of the total 5,000 bio-signals, 84 results showed that results from the system were differently the results of the expert's diagnosis and showed about 98 % accuracy. However, the results of the monitoring system did not occur when the results of the monitoring system were lower than that of experts. And About 98% accuracy was shown.

Effect of Visual Information by Ultrasound on Maternal-Fetal Attachment (초음파 영상을 통한 태아의 모습 제공 여부가 임부의 태아 애착에 미치는 영향)

  • Lee, Jee-Young;Cho, Jeong-Yeon;Chang, Soon-Bok;Park, Ju-Hyun;Lee, Young-Ho
    • Women's Health Nursing
    • /
    • v.8 no.3
    • /
    • pp.335-344
    • /
    • 2002
  • Providing visual information about the fetus to the mother by the ultrasound examination was found to be an effective nursing intervention to promote Maternal-Fetal Attachment. In keeping with the purpose of the study, to evaluate the effect of providing visual information by ultrasound on level of Maternal-Fetal Attachment, a non-equivalent experimental group quasi-experimental design was used. The data were collected using Cranley's Maternal-Fetal Attachment Scale(1981) with a research questionnaire that consisted of 16 items on general characteristics and 23 items on Maternal-Fetal Attachment from November 2, 2000 to August 11, 2001. Subjects were 126 pregnant women who were received visual information by ultrasound and 123 pregnant women who did not receive visual information by ultrasound after finishing examination. The data were analyzed by using the SPSS/PC+ window 10.0 version program. The results of this study were as follows: There was no statistical difference in general characteristics between both groups. The scores on Maternal-Fetal Attachment at second trimester show no statistical difference (t=1.123, p=0.263). The scores on Maternal-Fetal Attachment in both groups increased between the second trimester and third trimester. However, the increase was greater in the group receiving visual information by ultrasound as compared to the group which did not receive the visual information(t=-2.152, p=0.032). This result shows that providing visual information about the fetus by the ultrasound examination is effective in increasing Maternal-Fetal Attachment.

  • PDF

Maximizing Concurrency and Analyzable Timing Behavior in Component-Oriented Real-Time Distributed Computing Application Systems

  • Kim, Kwang-Hee Kane;Colmenares, Juan A.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.56-73
    • /
    • 2007
  • Demands have been growing in safety-critical application fields for producing networked real-time embedded computing (NREC) systems together with acceptable assurances of tight service time bounds (STBs). Here a service time can be defined as the amount of time that the NREC system could take in accepting a request, executing an appropriate service method, and returning a valid result. Enabling systematic composition of large-scale NREC systems with STB certifications has been recognized as a highly desirable goal by the research community for many years. An appealing approach for pursuing such a goal is to establish a hard-real-time (HRT) component model that contains its own STB as an integral part. The TMO (Time-Triggered Message-Triggered Object) programming scheme is one HRT distributed computing (DC) component model established by the first co-author and his collaborators over the past 15 years. The TMO programming scheme has been intended to be an advanced high-level RT DC programming scheme that enables development of NREC systems and validation of tight STBs of such systems with efforts far smaller than those required when any existing lower-level RT DC programming scheme is used. An additional goal is to enable maximum exploitation of concurrency without damaging any major structuring and execution approaches adopted for meeting the first two goals. A number of previously untried program structuring approaches and execution rules were adopted from the early development stage of the TMO scheme. This paper presents new concrete justifications for those approaches and rules, and also discusses new extensions of the TMO scheme intended to enable further exploitation of concurrency in NREC system design and programming.

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures; - Part Ⅱ. Influence of Acostic Damping Layer Properties - (저 잡음 수중 청음기의 설계 방안 연구 - Ⅱ. 음향 감쇠층 재질의 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.13-17
    • /
    • 1997
  • This paper investigates the influence of material properties of the acoustic damping layer in the low noise hydrophone designed in the previous paper. For increase of the insensitivity of the hydrophone to external noises, acoustic impedance and damping coefficients are selected and the effects of the selected material property on the hydrophone response to the external noises are simulated with finite element method (FEM). The results show that the damping coefficients are not influential to the structural vibration decoupling from the sensing element. On the other hand, the optimum acoustic impedance of compliant layer is estimated which is smaller than 1 Mrayl or larger than 4 Mrayl. However polymer materials, which are in general use for acoustic window and damping layers, is not appropriate for the compliant materials of this hydrophone. Therefore development of new composite materials, i.e. ceramic-polymer composite or metal-ceramic composites etc., is required for the development of effective self noise suppressing underwater hydrophones.

  • PDF

Efficient Fingertip Tracking and Mouse Pointer Control for Implementation of a Human Mouse (휴먼마우스 구현을 위한 효율적인 손끝좌표 추적 및 마우스 포인트 제어기법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.851-859
    • /
    • 2002
  • This paper discusses the design of a working system that visually recognizes hand gestures for the control of a window based user interface. We present a method for tracking the fingertip of the index finger using a single camera. Our method is based on CAMSHIFT algorithm and performs better than the CAMSHIFT algorithm in that it tracks well particular hand poses used in the system in complex backgrounds. We describe how the location of the fingertip is mapped to a location on the monitor, and how it Is both necessary and possible to smooth the path of the fingertip location using a physical model of a mouse pointer. Our method is able to track in real time, yet not absorb a major share of computational resources. The performance of our system shows a great promise that we will be able to use this methodology to control computers in near future.

Development and Evaluation of Smart Secondary Controls Using iPad for People with Hemiplegic Disabilities

  • Song, Jeongheon;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • Objective: The purpose of this study was to develop and evaluate smart secondary controls using iPad for the drivers with physical disabilities in the driving simulator. Background: The physically disabled drivers face problems in the operation of secondary control devices that accept a control input from a driver for the purpose of operating the subsystems of a motor vehicle. Many of conventional secondary controls consist of small knobs or switches that physically disabled drivers have difficulties in grasping, pulling or twisting. Therefore, their use while driving might increase distraction and workload because of longer operation time. Method: We examined the operation time of conventional and smart secondary controls, such as hazard warning, turn signal, window, windshield wiper, headlights, automatic transmission and horn. The hardware of smart secondary control system was composed of iPad, wireless router, digital input/output module and relay switch. We used the STISim Drive3 software for driving test, customized Labview and Xcode programs for interface control of smart secondary system. Nine subjects were involved in the study for measuring operation time of secondary controls. Results: When the driver was in the stationary condition, the average operation time of smart secondary devices decreased 32.5% in the normal subjects (p <0.01), 47.4% in the subjects with left hemiplegic disabilities (p <0.01) and 38.8% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. When the driver was driving for the test in the simulator, the average operation time of smart secondary devices decreased 36.1% in the normal subjects (p <0.01), 41.7% in the subjects with left hemiplegic disabilities (p <0.01) and 34.1% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. Conclusion: The smart secondary devices using iPad for people with hemiplegic disabilities showed significant reduction of operation time compared with conventional secondary controls. Application: This study can be used to design secondary controls for adaptive vehicles and to improve the quality of life of the people with disabilities.