• Title/Summary/Keyword: Design Variables

Search Result 7,257, Processing Time 0.034 seconds

Technique to reinforce the structure using the sensitivity information (민감도 정보를 이용한 구조물의 내구보강 기법)

  • Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.474-478
    • /
    • 2008
  • In this paper, the technique to reinforce the structure using the sensitivity information is proposed. Design variables related to the geometry of structure at fatigue fracture points are determined and sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated. Then the vector composed of gaps between the target life and initial life cycles at fracture points is calculated. The linear algebraic equation to solve the variation of design variables is composed. From the equation, the design variables for reinforced structure are determined.

  • PDF

Experimental Verification for Optimal Efficiency Model of Inverter-Fed Induction Motor (인버터 구동 유도 전동기의 최적 효율 모델 확인 실험)

  • 김재우;김병택;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.277-282
    • /
    • 2004
  • The optimal design of the rotor slot for inverter-fed induction motor was performed. The purpose of the paper is to verify the optimal point by experiment. A sensitivity analysis is performed, and the models near to an optimal point are selected. In the selecting process of models, 2 design variables with high sensitivity are selected out of 5 design variables. On the basis of the selected variables, 2 models near to the optimal point are decided. The tim e-step F.E.A and the experiment are performed. Optimal point and performance improvement of the optimal mode are verified.

Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation (Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석)

  • Tak, Tae-Oh;Joo, Jae-hoon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Dynamic Analysis and Optimization of 1ton Commercial Truck Using ADAMS/Insight (ADAMS/Insight를 이용한 1톤 상용트럭의 동역학 해석 및 최적화)

  • Chun, Hung-Ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.15-20
    • /
    • 2003
  • Stochastic simulation technique has advantages over deterministic simulation in various engineering analysis, since stochastic simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation mothod in ADAMS/Insight for steady-state cornering and J-turn behavior of a truck with design variables like hard points and busing stiffnesses have performed to achieve better dynamic performance. The main purpose is to improve understeer gradient at steady-state cornering and minimize peak lateral acceleration and peak yaw rate at J-turn. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

A Case Study on the Design Variables Evaluation of Green Roof System effecting on Building Energy Conservation (건물 에너지 소비량에 영향을 미치는 옥상녹화시스템 설계변수 평가에 관한 사례 연구)

  • Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • This study is to find out the major design variables of Green roof system effecting on the building energy consumption. Therefore, in three categories of green roof system, namely, foliage layer, soil layer and irrigation, 10 design variables are selected and simulated with one-story case building. Simulation is carried out with Design Builder and EnergyPlus. Finally, it was found out the effects of major variables affecting on the building heating and cooling energy and how they are affecting on the heating and cooling seasons respectively.

An Adjoint Variable Method for Eigenproblem Design Sensitivity Analysis of Damped Systems (감쇠계 고유치문제의 설계민감도해석을 위한 보조변수법)

  • Lee, Tae Hee;Lee, Jin Min;Yoo, Jung Hoon;Lee, Min Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1527-1533
    • /
    • 2005
  • Three methods for design sensitivity analysis such as finite difference method(FDM), direct differentiation method(DDM) and adjoint variable method(AVM) are well known. FDM and DDM for design sensitivity analysis cost too much when the number of design variables is too large. An AVM is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation. Because the adjoint equation is independent of the number of design variables, an AVM is efficient for when number of design variables is too large. In this study, AVM has been extended to the eigenproblem of damped systems whose eigenvlaues and eigenvectors are complex numbers. Moreover, this method is implemented into a commercial finite element analysis program by means of the semi-analytical method to show applicability of the developed method into practical structural problems. The proposed_method is compared with FDM and verified its accuracy for analytical and practical cases.

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Adjoint Design Sensitivity Analysis of Damped Systems (보조변수법을 이용한 감쇠계 고유치 설계민감도 해석)

  • Yoo, Jung-Hoon;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.398-401
    • /
    • 2001
  • There are two methods to calculate design sensitivity such as direct differentiation method and adjoint method. A sort of direct differentiation method for design sensitivity analysis costs too much when number of design variables is much larger than the number of response functions whose design sensitivity analyses are required. Therefore, an adjoint method is suggested for the case that the dimension of design variables is lager than the number of response function. An adjoint method is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation, requiring only the eigenvalue and its associated eigenvectors for mode being differentiated. This method has been extended to the repeated eigenvalue problem. In this paper, we propose an adjoint method for deign sensitivity analysis of damped vibratory systems with distinct eigenvalues.

  • PDF

A Study on the Robust Design for Unconstrained Optimization Problems (제한조건이 없는 최적화 문제의 강건설계에 관한 연구)

  • 이권희;엄인섭;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2825-2836
    • /
    • 1994
  • The engineering optimization has been developed for the automatic design of engineering systems. Since the conventional optimum is determined without considering noise factors, applications to practical problems can be limited. Current design practice tends to account for these noises by the specification of closer tolerances or the use of safety factors. However, these approaches may be very expensive. Thus the consideration on the noises of design variables is needed for optimal design. A method is presented to find robust solutions for unconstrained optimization problems. The method is applied to discrete and continuous variables. The orthogonal array is utilized based on the Taguchi concept. Through mathematical proofs and numerical examples, it is verified that solutions from the suggested method are more insensitive than the conventional optimum within the range of variations for design variables.