• Title/Summary/Keyword: Design Response Spectrum

Search Result 462, Processing Time 0.027 seconds

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Spectral Analysis of Rectangular, Hanning, Hamming and Kaiser Window for Digital Fir Filter

  • Gautam, Ganesh;Shrestha, Surendra;Cho, Seongsoo
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Digital filters are extensively used in the world of communication. In order to design a digital finite impulse response (FIR) filter that satisfies all the required conditions is challenging. In this paper, design techniques of digital low pass FIR filters using Rectangular window method, Hamming window, Hanning window, and Optimal Parks McClellan method are presented. The stability, number of components required and filter coefficients are demonstrated for different design techniques. It is demonstrated that filter design using hamming window is comparatively better than rectangular and hanning window though the components required for all of the windowing technique are same, hamming shows higher stability. The stability is shown with the help of magnitude and phase spectrum of each window. Simulation is carried out using MATLAB and comparisons are made entirely based on the output of the simulation.

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model (단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가)

  • Lee, Eun-Ho;Kwak, Si-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

Development of Probabilistic Seismic Coefficients of Korea (국내 확률론적 지진계수 생성)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee;Lee, Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.87-97
    • /
    • 2009
  • The seismic site coefficients are often used with the seismic hazard maps to develop the design response spectrum at the surface. The site coefficients are most commonly developed deterministically, while the seismic hazarde maps are derived probabilistically. There is, hence, an inherent incompatibility between the two approaches. However, they are used together in the seismic design codes without a clear rational basis. To resolve the fundamental imcompatibility between the site coefficients and hazard maps, this study uses a novel probabilistic seismic hazard analysis (PSHA) technique that simulates the results of a standard PSHA at a rock outcrop, but integrates the site response analysis function to capture the site amplification effects within the PSHA platform. Another important advantage of the method is its ability to model the uncertainty, variability, and randomness of the soil properties. The new PSHA was used to develop fully probabilistic site coefficients for site classes of the seismic design code and another sets of site classes proposed in Korea. Comparisons highlight the pronounced discrepancy between the site coefficients of the seismic design code and the proposed coefficients, while another set of site coefficients show differences only at selected site classes.

Review for Main Contents of Earthquake Resistance Design Regulations for Subway Structures (도시철도 내진설계기준 주요 내용 검토)

  • Yoo, Je-Nam;Lee, Sung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.468-474
    • /
    • 2005
  • Recently 'Earthquake Resistance Design Regulations for Subway structures' has been established. It is the first time in our country. In this paper the regulations is reviewed and expalined briefly. Contents for the Performance Based Design Critetia and the estimation method for the design earthquake reponse spectrum in underground structures are reviewed. Earthquake resistance design for the evaluation of liquifaction, boundary spring coefficients for structural analysis modelling and soil response displacements are investigated and described also. Earthquake resitance design details shall be explained.

  • PDF

DEVELOPMENT OF SEISMIC DESIGN CODES OF KOREA

  • Chang, Sung-Pil;Kim, Jae-Kwan;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.319-331
    • /
    • 1999
  • The seismic hazard of Korea is briefly described. The seismic design requirements design earthquake levels and design response spectrum that are going to be adopted in the future code system are introduced. Characteristics of ground motion and seismic responses of structures in low to moderate seismicity regions are briefly described. The concept of limited ductility design that seems appropriate for the seismic design in Korea is explained.

  • PDF

Evaluation of Ground Motion Modification Methodologies for Seismic Structural Damage (지진 구조 손상도 예측을 위한 지반 운동 수정법 평가)

  • Heo, YeongAe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2013
  • The selection of appropriate ground motions and reasonable modification are becoming increasingly critical in reliable prediction on seismic performance of structures. A widely used amplitude scaling approach is not sufficient for robust structural evaluation considering a site specific seismic hazard because only one spectral value is matched to the design spectrum typically at the structural fundamental period. Hence alternative approaches for ground motion selection and modifications have been suggested. However, there is no means to evaluate such methodologies yet. In this study, it is focused to describe the main questions resided in the amplitude scaling approach and to propose a regression model for structural damage as point of comparison. Spectrum compatible approach whose resulting spectrum matches the design spectrum at the entire range of the structural period is considered as alternative to be compared to the amplitude scaling approach. The design spectrum is generated according to ASCE7-05.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.