• Title/Summary/Keyword: Design Rainfall

Search Result 703, Processing Time 0.03 seconds

Development of the Intensity-Duration-Frequency Curve at Kong-Ju Area (공주지역의 강우강도-지속기간-빈도곡선 개발)

  • Jeong, Sang-Man;Park, Seok-Chae;Yoo, Chan-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.85-93
    • /
    • 2002
  • This paper is to derive the Intensity-Duration-Frequency Curve at Kong-Ju area after estimating probable rainfall depths using Rainfall Frequency Atlas of Korea. It has been suggested that the probable rainfall intensity formulas should be classified by short and long term basis in this area. The coefficients of determination of the probable rainfall intensity formulas are calculated as high as 0.9924 through 0.9971. Four types of rainfall intensity formulas such as Talbot type, Sherman type, Japanese type, General type are considered to determine the best type for the Kong-Ju area. Sherman type applied in this study can be determined as the representative probable rainfall intensity formula in the area. Therefore the rainfall intensity formulas for the selected return period in this study provide valuable insight into the estimation of the rainfall intensity. The developed Intensity-Duration-Frequency Curve can be used to provide a better hydraulic design at Kong-Ju area.

Comparison Study of Rainfall Data Using RDAPS Model and Observed Rainfall Data (RDAPS 모델의 강수량과 실측강수량의 비교를 통한 적용성 검토)

  • Jeong, Chang-Sam;Shin, Ju-Young;Jung, Young-Hun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The climate change has been observed in Korea as well as in the entire world recently. The rainstorm has been gradually increased and then the damage has been grown. It is getting important to predict short-term rainfall. The Korea Meteorological Administration (KMA) generates numerical model outputs which are computed by Global Data Assimilation and Prediction System (GDAPS) and Regional Data Assimilation and Prediction System (RDAPS). The KMA predicts rainfall using RDAPS results. RDAPS model generates 48 hours data which is organized 3 hours data accumulated at 00UTC and 12UTC. RDAPS results which are organized 3 hours time scale are converted into daily rainfall to compare observed daily rainfall. In this study, 9 cases are applied to convert RDAPS results to daily rainfall data. The MAP (mean areal precipitation) in Geum river basin are computed by using KMA which are 2005 are used. Finally, the best case which gives the close value to the observed rainfall data is obtained using the average absolute relative error (AARE) especially for the Geum River basin.

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul (분단위 강우자료를 이용한 극치강우의 최적 시간분포 연구: 서울지점을 중심으로)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.275-290
    • /
    • 2012
  • In this study, we have developed an optimal time distribution model through extraction of peaks over threshold (POT) series. The median values for annual maximum rainfall dataset, which are obtained from the magnetic recording (MMR) and the automatic weather system(AWS) data at Seoul meteorological observatory, were used as the POT criteria. We also suggested the improved methodology for the time distribution of extreme rainfall compared to Huff method, which is widely used for time distributions of design rainfall. The Huff method did not consider changing in the shape of time distribution for each rainfall durations and rainfall criteria as total amount of rainfall for each rainfall events. This study have suggested an extracting methodology for rainfall events in each quartile based on interquartile range (IQR) matrix and selection for the mode quartile storm to determine the ranking cosidering weighting factors on minutely observation data. Finally, the optimal time distribution model in each rainfall duration was derived considering both data size and characteristics of distribution using kernel density function in extracted dimensionless unit rainfall hyetograph.

Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow (토석류 발생 예측을 위한 강우경보지수 산정)

  • Nam, Dong-Ho;Lee, Suk-Ho;Kim, Man-Il;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • At present, there has been a wide range of studies on debris flow in Korea, more specifically, on rainfall characteristics that trigger debris flow including rainfall intensity, rainfall duration, and preceding rainfall. the prediction of landslide / debris flow relies on the criteria for landslide watch and warning by the Korea Forest Service (KFS, 2012). Despite this, it has been found that most incidents of debris flow were caused by rainfall above the level of landslide watch, maximum hourly rainfall, extensive damage was caused even under the watch level. Under these circumstances, we calculated a rainfall triggering index (RTI) using the main factors that trigger debris flow-rainfall, rainfall intensity, and cumulative rainfall-to design a more sophisticated watch / warning criteria than those by the KFS. The RTI was classified into attention, caution, alert, and evacuation, and was assessed through the application of two debris flow incidents that occurred in Umyeon Mountain, Seoul, and Cheongju, Inje, causing serious damage and casualties. Moreover, we reviewed the feasibility of the RTI by comparing it with the KFS's landslide watch / warning criteria (KFS, 2012).

Two-dimensional Inundation Analysis Using Stochastic Rainfall Variation and Geographic Information System (추계학적 강우변동생성 기법과 GIS를 연계한 2차원 침수해석)

  • Lee, Jin-Young;Cho, Wan-Hee;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2010
  • Recently actual rainfall pattern is decreasing rainy days and increasing in rainfall intensity and the frequency of flood occurrence is also increased. To consider recent situation, Engineers use deterministic methods like a PMP(Probable Maximum Precipitation). If design storm wouldn't occur, increasing of design criteria is extravagant. In addition, the biggest structure cause trouble with residents and environmental problem. And then it is necessary to study considering probability of rainfall parameter in each sub-basin for design of water structure. In this study, stochastic rainfall patterns are generated by using log-ratio method, Johnson system and multivariate Monte Carlo simulation. Using the stochastic rainfall patterns, hydrological analysis, hydraulic analysis and 2nd flooding analysis were performed based on GIS for their applicability. The results of simulations are similar to the actual damage area so the methodology of this study should be used about making a flood risk map or regidental shunting rout map against the region.

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.

Runoff Capture Curve for Non-Point Source Management (비점오염원 관리를 위한 유출포착곡선)

  • Kim, Sangdan;Jo, Deok Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.829-836
    • /
    • 2007
  • For the purpose of managing non-point sources, water quality control basins (WQCBs) are often designed to capture rainfall events smaller than extreme events. The design rainfall statistics and runoff capture rates for sizing a WQCB should be derived from the local long-term continuous rainfall record. In this study, the 31-year continuous rainfall data recorded in Busan is analyzed to derive the synthesized runoff capture curve incorporated with SCS curve number.

Revisiting design flood estimation of Nam River Dam basin considering climate change (기후변화를 고려한 남강댐 유역의 홍수량 재산정)

  • Lee, Hyunseung;Lee, Taesam;Park, Taewoong;Son, Chanyoung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.719-729
    • /
    • 2016
  • Extreme events of rainfall has increased mainly from climate change, resulting in more severe floods intensified by land use development. Appropriate estimation of design floods gets more attention to ensuring the safety of life and property in flood-prone areas for hydraulic structures such as dams and levees. In the current study, we reestimated the design flood of the Nam River Dam to adopt the influence of climatic change of hydrometeorological variables including recent datasets of extreme rainfall events. The climate change scenarios of extreme rainfall events in hourly scale that has been downscaled was used in analyzing the annual maximum rainfall for the weather stations in the Nam River Dam basin. The estimates of 200-year and 10,000-year return periods were calculated to provide a design flood and a probable maximum flood case for the Nam River Dam. The results present that the new estimate employing the RCP4.5 and RCP8.5 downscaled data is much higher than the original design flood estimated at the dam construction stage using a 200-year return period. We can conclude that the current dam area might be highly vulnerable and need an enhancement of the dam safety regarding the reduction of damage in Sachen bay from the outflow of Nam River Dam.

The Study to Derive Empirical Formula of Rainfall Intencity in Korea (한국에 있어서 강우강도의 효과에 관한 연구)

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.2
    • /
    • pp.1644-1650
    • /
    • 1969
  • In the design of general hydrological structures, it is well know that the design flood is of importance in the design of those structures. As the design flood is estimated using the design storm, the design storm is defined by the rainfall intensity itself. Though I had studied and reported many times the reports about the rainfall-intensity in my country, poorly I did not study the long-period variation of the intensity through each section in my country before. But now, in the basin area of the Han river and the Keum river, the self-recorded rainfall charts of the single storms, which are mostly above rainfall amount of 30mm and data of about 4500 with the 150 stationyear, were analyzed, And then, the intensity formula of the hourly unit is estimated using the period from 10 minutes to 5 days. The method to analyze and estimate them, and the final results will be summarized as mentioned below: (i) At first I intended to select out the homogeneous watersheds of three, one in the Han river and two in the Keum river. But I would select the northern and the sourthern river basins, and westward from Koan station, in the basins of the Han river. Also I would select the upstream area, and the downstream area including the watershed of Chungioo, Kongjoo, Chupungryung, and the Mt. Sock, in the basins of the Keum river. Finally, I could find that there couldn't in the Keum river basin. So, I decided out and analyze only river basins of the Han river with limitation mentioned above. (ii) The statistical method to select out the homogenous watersheds is the test of homogeneous variance, and it is estimated from the following equation: $$X_{k1}^2=[{\Sigma}(n_i-1)log\bar{S^2}-\Sigma(n_i-1)log\bar{S^2}]{\times}loge$$ (iii) Actually, each homogeneous watershed has individually its own intensity formula, But I would express them as the actual amount, because the equation of intensity variance is experiential and theoretical equation of the variance. Therefore the caluating equation is actually more convenient in the actual uses. (iv) This report is one of the series for me to give the basis to the actual designs. The cost for this study is provided by the Ministry of Construction. And the designs of the hydrological structures in the watersheds with limitation mentioned above may be concerned with and based upon this report.

  • PDF