• Title/Summary/Keyword: Design Point

Search Result 7,901, Processing Time 0.035 seconds

Conceptual Design of Deep-sea Multi-Point Mooring by using Two-Point Mooring (2점지지계류를 활용한 심해 부유체의 다점지지계류 개념설계)

  • Park, In-Kyu;Kim, Kyong-Moo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.462-467
    • /
    • 2008
  • In this paper, we investigated the design method of mooring system in ultra deep sea and carried out the conceptual design for offshore West Africa oil field in ultra deep sea of 3000 meters. Recently, it was feasible to design and install the offshore floating structures in deep sea of up to 2000 meters. Due to the simplicity, two-point mooring design is fully utilized. Force-excursion curves are throughly examined to find out the feasibility of various combinations of mooring lines. Free length and pretension effects are discussed. It is found that composite materials including synthetic fiber rope may be good solution for ultra deep sea mooring design.

Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point (설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계)

  • Ko, Woo-Sik;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

Design Optimization Using the Two-Point Convex Approximation (이점 볼록 근사화 기법을 적용한 최적설계)

  • Kim, Jong-Rip;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1041-1049
    • /
    • 2003
  • In this paper, a new local two-point approximation method which is based on the exponential intervening variable is proposed. This new algorithm, called the Two-Point Convex Approximation(TPCA), use the function and design sensitivity information from the current and previous design points of the sequential approximate optimization to generate a sequence of convex, separable subproblems. This paper describes the derivation of the parameters associated with the approximation and the numerical solution procedure. In order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve several typical design problems. These optimization results are compared with those of other optimizers. Numerical results obtained from the test examples demonstrate the effectiveness of the proposed method.

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

Hydraulic Design of Reactor Coolant Pump Considering Head Curve Slope at Design Point (양정곡선 기울기를 고려한 원자로 냉각재 펌프의 수력설계)

  • Yoo, Il-Su;Park, Mu-Ryong;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • The hydraulic part in reactor coolant pump consists of suction nozzle, impeller, diffuser, and discharge nozzle. Among them, impeller is required to be designed to satisfy performance requirements such as head, NPSHR, and head curve slope at design point. Present study is intended to suggest the preliminary design method sizing the impeller size to satisfy the design requirement particularly including head curve slope at design point. On a basis of preliminary design result, hydraulic components have been designed in detail by CFD and then manufactured in a reduced scale. Experiment in parallel with computational analysis has been executed in order to confirm the hydraulic performance. Comparison results show good agreement with design result, confirming the validity of design method suggested in this study.

Point load actuation on plate structures based on triangular piezoelectric patches

  • Tondreau, Gilles;Raman, Sudharsana Raamanujan;Deraemaeker, Arnaud
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.547-565
    • /
    • 2014
  • This paper investigates the design of a perfect point load actuator based on flat triangular piezoelectric patches. Applying a difference of electric potential between the electrodes of a triangular patch leads to point loads at the tips and distributed moments along the edges of the electrodes. The previously derived analytical expressions of these forces show that they depend on two factors: the width over height (b/l) ratio of the triangle, and the ratio of the in-plane piezoelectric properties ($e_{31}/e_{32}$) of the active layer of the piezoelectric patch. In this paper, it is shown that by a proper choice of b/l and of the piezoelectric properties, the moments can be cancelled, so that if one side of the triangle is clamped, a perfect point load actuation can be achieved. This requires $e_{31}/e_{32}$ to be negative, which imposes the use of interdigitated electrodes instead of continuous ones. The design of two transducers with interdigitated electrodes for perfect point load actuation on a clamped plate is verified with finite element calculations. The first design is based on a full piezoelectric ceramic patch and shows superior actuation performance than the second design based on a piezocomposite patch with a volume fraction of fibres of 86%. The results show that both designs lead to perfect point load actuation while the use of an isotropic PZT patch with continuous electrodes gives significantly different results.

Efficient Mechanical System Optimization Using Two-Point Diagonal Quadratic Approximation in the Nonlinear Intervening Variable Space

  • Park, Dong-Hoon;Kim, Min-Soo;Kim, Jong-Rip;Jeon, Jae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1257-1267
    • /
    • 2001
  • For efficient mechanical system optimization, a new two-point approximation method is presented. Unlike the conventional two-point approximation methods such as TPEA, TANA, TANA-1, TANA-2 and TANA-3, this introduces the shifting level into each exponential intervening variable to avoid the lack of definition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these shifted exponential intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

A Study on the Design characteristics of Renovation Based on the Durative Point of View - Focus on European Museum and Gallery cases - (지속적 관점으로 본 Renovation 디자인 특성에 관한 연구 - 유럽의 박물관과 미술관 사례를 중심으로 -)

  • 이혜영;신홍경
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2003.05a
    • /
    • pp.139-143
    • /
    • 2003
  • When the past architecture is renovated, the important point is to approach from social and historical point of view. In Europe, there are many cultural and architectural hereditaments by backed-up ancient history and are usually happened modernistic applications of these architectures. Specially, when the past architecture is renovated, this study is focused on cases of museum and gallery which the people are approachable by me. I studied how to expressed the durability and to distinguish the design characteristics that is connected with the past from the European cases at modernistic point of time. The design characteristics are discovered two kinds. The first is 'consideration of the past architecture' and the second is 'consideration of the present age'. The results of this study are as follows; 1. The component reanalysis 2. The use of material 3. The introduction of symbolic elements 4. The Change of function

  • PDF