• Title/Summary/Keyword: Design Modeling

Search Result 7,084, Processing Time 0.04 seconds

Seismic Impact Analysis of Buried Citygas Pipes through Structural Analysis (구조해석을 통한 도시가스 매설배관의 지진 영향 분석)

  • Yoon Ho Jo;Maria Choi;Ju An Yang;Sang Il Jeon;Ji Hoon Jeon
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • Earthquakes are one of the most important disasters affecting underground structures. Urban gas underground pipes may cause safety problems of structures in the event of an earthquake. Since Korea began digital observation, the number of earthquakes has been steadily increasing. The seismic design standard for urban gas pipes was established in 2008, but it is difficult to estimate the impact of pipes in the event of an earthquake based on the installation of pipes. In this study, structural analysis was performed on PE (polyethylene pipe) pipes and PLP (polyethylene coated steel pipe) pipes, which are mainly used as buried pipes in Korea, according to environmental and pipe variables in the event of an earthquake. This study sought to find the variables of the most vulnerable buried pipe by modeling pipes through Computer Aided Engineering (CAE) and generating displacement on the ground. Through this study, it was confirmed that the larger the elastic modulus of the soil, the deeper the buried depth, the smaller the tube diameter, and the higher the pressure, the more PLP pipes are affected by earthquakes than PE. Based on these results, the vulnerable points of buried urban gas pipes are inferred and used for special inspections of buried pipes in the event of an earthquake.

Changes in Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Evaluation and Modification Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 평가와 수정 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 변화: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.107-116
    • /
    • 2024
  • The purpose of this study is to analyze changes in pre-service chemistry teachers' cognition of the nature of model in the evaluation and modification process of model using technology. Changes in cognition of the nature of model were analyzed focusing on the 'Abstraction' and 'Simplification' of the 'Representational aspect', 'Interpretation', 'Reasoning', 'Explanation' and 'Quantification' of the 'Explanatory aspect' that were deemed insufficient for pre-chemistry teachers in previous study. For this purpose, 19 third-year pre-service chemistry teachers at a teacher's college in Chungcheongbuk-do were asked to evaluate the model related to Boyle's law developed using technology, revise the model based on the evaluation results, and make a final evaluation. As a result of the study, it was confirmed that pre-service chemistry teachers' cognition of 'Simplification' of the 'Representational aspect' and 'Interpretation', 'Explanation', and 'Quantification' of the 'Explanatory aspect' changed positively through the evaluation and modification process of the model. Therefore, it was found that the evaluation and modification process of the model plays a key role in changing the cognition of the nature of model. However, there was little change in cognition of 'Abstraction' of the 'Representational aspect' and 'Reasoning' of the 'Explanatory aspect'. The cognition of these factors can be seen as more difficult to change than the cognition of other factors. To solve this problem, more sophisticated educational design for pre-service chemistry teachers is needed.

Agent Model Construction Methods for Simulatable CPS Configuration (시뮬레이션 가능한 CPS 구성을 위한 에이전트 모델 구성 방법)

  • Jinmyeong Lee;Hong-Sun Park;Chan-Woo Kim;Bong Gu Kang
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • A cyber-physical system is a technology that connects the physical systems of a manufacturing environment with a cyber space to enable simulation. One of the major challenges in this technology is the seamless communication between these two environments. In complex manufacturing processes, it is crucial to adapt to various protocols of manufacturing equipment and ensure the transmission and reception of a large volume of data without delays or errors. In this study, we propose a method for constructing agent models for real-time simulation-capable cyberphysical systems. To achieve this, we design data collection units as independent agent models and effectively integrate them with existing simulation tools to develop the overall system architecture. To validate the proposed structure and ensure reliability, we conducted empirical testing by integrating various equipment from a real-world smart microfactory system to assess the data collection capabilities. The experiments involved testing data delay and data gaps related to data collection cycles. As a result, the proposed approach demonstrates flexibility by enabling the application of various internal data collection methods and accommodating different data formats and communication protocols for various equipment with relatively low communication delays. Consequently, it is expected that this approach will promote innovation in the manufacturing industry, enhance production line efficiency, and contribute to cost savings in maintenance.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

An Exploratory Study on the Effects of Relational Benefits and Brand Identity : mediating effect of brand identity (관계혜택과 브랜드 동일시의 역할에 관한 탐색적 연구: 브랜드 동일시의 매개역할을 중심으로)

  • Bang, Jounghae;Jung, Jiyeon;Lee, Eunhyung;Kang, Hyunmo
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.155-175
    • /
    • 2010
  • Most of the service industries including finance and telecommunications have become matured and saturated. The competitions have become severe while the differences among brands become smaller. Therefore maintaining good relationships with customers has been critical for the service providers. In case of credit card and debit card, the similar patterns are shown. It is important for them to maintain good relationships with customers, and therefore, they have used marketing program which provides customized services to customers and utilizes the membership programs. Not only do they build and maintain good relationships, but also highlight their brands from the emotional aspects. For example, KB Card or Hyundai Card uses well-known designers' works for their credit card design. As well, they differentiate the designs of credit cards to stress on their brand personalities. BC Card introduced the credit card with perfume that a customer would like. Even though the credit card is small and not shown to public easily, it becomes more important for those companies to touch the customers' feelings with the brand personalities and their images. This is partly because of changes in consumers' lifestyles. Y-generations becomes highly likely to express themselves in many different ways and more emotional than X-generations. For the Y-generations, therefore, even credit cards in the wallet should be personalized and well-designed. In line with it, credit cards with good design can be seen as an example of brand identity, where different design for each customer can be used to recognize the membership groups that customers want to belong. On the other hand, these credit card companies offer the special treatment benefits for those customers who are heavy users for the cards. For example, those customers who love sports will receive some special discounts when they use their credit cards for sports related products. Therefore this study attempted to explore the relationships between relational benefits, brand identification and loyalty. It has been well known that relational benefits and brand identification lead to loyalty independently from many other studies, but there has been few study to review all the three variables all together in a research model. Furthermore, as reviewed above, in the card industry, many companies attempt to associate the brand image with their products to fit their customers' lifestyles while relational benefits are still playing an important role for their business. Therefore in our research model, relational benefits, brand identification, and loyalty are all included. We focus on the mediating effect of brand identification. From the relational benefits perspective, only special treatment benefit and confidence benefit are included. Social benefit is not applicable for this credit card industry because not many cases of face-to-face interaction can be found. From the brand identification perspective, personal brand identity and social brand identity are reviewed and included in the model. Overall, the research model emphasizes that the relationships between relational benefits and loyalty will be mediated by the effect of brand identification. The effects of relational benefits which are confidence benefit and special treatment benefits on loyalty will be realized when they fit to the personal brand identity and social brand identity. In the research model, therefore, the relationships between confidence benefit and social brand identity, and between confidence benefit and personal identity are hypothesized while the effects of special treatment benefit on social brand identity and personal brand identity are hypothesized. Loyalty, then, is hypothesized to have positive relationships with personal brand identity and social brand identity. In addition, confidence benefit among the relational benefits is expected to have a direct, positive relationship with loyalty because confidence benefit has been recognized as a critical factor for good relationships and satisfaction. Data were collected from college students who have been using either credit cards or debit cards. College students were regarded good subjects because they are in Y-generation cohorts and have tendency to express themselves more. Total sample size was two hundred three at the beginning, but after deleting those data with many missing values, one hundred ninety-seven data points were remained and used for the model testing. Measurement items were brought from the previous literatures and modified for this research. To test the reliability, using SPSS 14, chronbach's α was examined and all the values were from .874 to .928 exceeding over .7. Using AMOS 7.0, confirmatory factor analysis was conducted to investigate the measurement model. The measurement model was found good fit with χ2(67)=188.388 (p= .000), GFI=.886, AGFI=.821, CFI=.941, RMSEA=.096. Using AMOS 7.0, structural equation modeling has been used to analyze the research model. Overall, the research model fit were χ2(68)=188.670 (p= .000), GFI=.886, AGFI=,824 CFI=.942, RMSEA=.095 indicating good fit. In details, all the paths hypothesized in the research model were found significant except for the path from social brand identity to loyalty. Personal brand identity leads to loyalty while both confidence benefit and special treatment benefit have a positive relationships with personal and social identities. As well, confidence benefit has a direct positive effect on loyalty. The results indicates the followings. First, personal brand identity plays an important role for credit/debit card usage. Therefore even for the products which are not shown to public easy, design and emotional aspect can be important to fit the customers' lifestyles. Second, confidence benefit and special treatment benefit have a positive effects on personal brand identity. Therefore it will be needed for marketers to associate the special treatment and trust and confidence benefits with personal image, personality and personal identity. Third, this study found again the importance of confidence and trust. However interestingly enough, social brand identity was not found to be significantly related to loyalty. It can be explained that the main sample of this study consists of college students. Those strategies to facilitate social brand identity are focused on high social status groups while college students have not been established their status yet.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: II. Effect of Thermodynamic Equations of State on Compression and Transport Process (이산화탄소 해양지중저장 처리를 위한 공정 설계: II. 열역학 상태방정식이 압축 및 수송 공정에 미치는 영향 평가)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. $CO_2$ capture process from the major point sources such as power plants, transport process from the capture sites to storage sites and storage process to inject $CO_2$ into the deep marine geological structure can be simulate with numerical modeling. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. We also studied the effect of thermodynamic equation of state in designing the compression and transport process. As a results of comparison of numerical calculations, all relevant equation of state excluding ideal equation of state showed similar compression behavior in pure $CO_2$. On the other hand, calculation results of BWRS, PR and PRBM showed totally different behavior in compression and transport process of captured $CO_2$ mixture from the oxy-fuel combustion coal-fired plants. It is recommended to use PR or PRBM in designing of compression and transport process of $CO_2$ mixture containing NO, Ar and $O_2$.

  • PDF

Development of the Information Delivery System for the Home Nursing Service (가정간호사업 운용을 위한 정보전달체계 개발 I (가정간호 데이터베이스 구축과 뇌졸중 환자의 가정간호 전산개발))

  • Park, J.H;Kim, M.J;Hong, K.J;Han, K.J;Park, S.A;Yung, S.N;Lee, I.S;Joh, H.;Bang, K.S
    • Journal of Home Health Care Nursing
    • /
    • v.4
    • /
    • pp.5-22
    • /
    • 1997
  • The purpose of the study was to development an information delivery system for the home nursing service, to demonstrate and to evaluate the efficiency of it. The period of research conduct was from September 1996 to August 31, 1997. At the 1st stage to achieve the purpose, Firstly Assessment tool for the patients with cerebral vascular disease who have the first priority of HNS among the patients with various health problems at home was developed through literature review. Secondly, after identification of patient nursing problem by the home care nurse with the assessment tool, the patient's classification system developed by Park (1988) that was 128 nursing activities under 6 categories was used to identify the home care nurse's activities of the patient with CAV at home. The research team had several workshops with 5 clinical nurse experts to refine it. At last 110 nursing activities under 11 categories for the patients with CVA were derived. At the second stage, algorithms were developed to connect 110 nursing activities with the patient nursing problems identified by assessment tool. The computerizing process of the algorithms is as follows: These algorithms are realized with the computer program by use of the software engineering technique. The development is made by the prototyping method, which is the requirement analysis of the software specifications. The basic features of the usability, compatibility, adaptability and maintainability are taken into consideration. Particular emphasis is given to the efficient construction of the database. To enhance the database efficiency and to establish the structural cohesion, the data field is categorized with the weight of relevance to the particular disease. This approach permits the easy adaptability when numerous diseases are applied in the future. In paralleled with this, the expandability and maintainability is stressed through out the program development, which leads to the modular concept. However since the disease to be applied is increased in number as the project progress and since they are interrelated and coupled each other, the expand ability as well as maintainability should be considered with a big priority. Furthermore, since the system is to be synthesized with other medical systems in the future, these properties are very important. The prototype developed in this project is to be evaluated through the stage of system testing. There are various evaluation metrics such as cohesion, coupling and adaptability so on. But unfortunately, direct measurement of these metrics are very difficult, and accordingly, analytical and quantitative evaluations are almost impossible. Therefore, instead of the analytical evaluation, the experimental evaluation is to be applied through the test run by various users. This system testing will provide the viewpoint analysis of the user's level, and the detail and additional requirement specifications arising from user's real situation will be feedback into the system modeling. Also. the degree of freedom of the input and output will be improved, and the hardware limitation will be investigated. Upon the refining, the prototype system will be used as a design template. and will be used to develop the more extensive system. In detail. the relevant modules will be developed for the various diseases, and the module will be integrated by the macroscopic design process focusing on the inter modularity, generality of the database. and compatibility with other systems. The Home care Evaluation System is comprised of three main modules of : (1) General information on a patient, (2) General health status of a patient, and (3) Cerebrovascular disease patient. The general health status module has five sub modules of physical measurement, vitality, nursing, pharmaceutical description and emotional/cognition ability. The CVA patient module is divided into ten sub modules such as subjective sense, consciousness, memory and language pattern so on. The typical sub modules are described in appendix 3.

  • PDF

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.