• Title/Summary/Keyword: Design Function

Search Result 11,173, Processing Time 0.038 seconds

A Study on the Multiresponse Robust Design using Loss Function

  • Kwon, Yong-Man;Chang, Duk-Joon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.1-6
    • /
    • 2005
  • In this paper we propose how to simultaneously optimize multiple responses for robust design when data are collected from a combined array. The proposed method is based on the quadratic loss function. An example is illustrated to show the proposed method.

  • PDF

Algebraic Observer Design for Descriptor Systems via Block-pulse Function Expansions (블록펄스함수 전개를 이용한 Descriptor 시스템의 대수적 관측기 설계)

  • 안비오
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.259-265
    • /
    • 2001
  • In the last two decades, many researchers proposed various usages of the orthogonal functions such as Walsh, Haar and BPF to solve the system analysis, optimal control, and identification problems from and algebraic form. In this paper, a simple procedure to design and algerbraic observer for the descriptor system is presented by using block pulse function expansions. The main characteristic of this technique is that it converts differential observer equation into an algerbraic equation. And furthermore, a simple recursive algorithm is proposed to obtain BPFs coefficients of the observer equation.

  • PDF

The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source (램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화)

  • 송현정;나상신
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.333-336
    • /
    • 2001
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired.

  • PDF

A study on the tester design of Autonomous station control system (자율분산 역 제어시스템의 테스터 설계 연구)

  • Kim, Young-Hoon;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1531-1535
    • /
    • 2008
  • The Tester of Autonomous station control system is a system which can test the main function of Autonomous station control system through the data field. The purpose of this paper is to meet the system requirements and design a main function, menu and user interface using Use-case. The main function is a time-deadline test, a schedule broadcast test, a route control test and a version-up test, etc. The design of Autonomous station control system tester plays a primary role of the important document for the upcoming future system development of the tester.

  • PDF

Loss Function Approach to Multiresponse Robust Design

  • Chang, Duk-Joon;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.255-261
    • /
    • 2005
  • Many designed experiments require the simultaneous optimization of multiple responses. In this paper, we propose how to simultaneously optimize multiple responses for robust design when data are collected from a combined array. The proposed method is based on the quadratic loss function. An example is illustrated to show the proposed method.

  • PDF

Minimization of Cogging Torque in Permanent Magnet Motors by Stator Pole Shoe Pairing and Magnet Arc Design using Genetic Algorithm (유전자 알고리즘을 이용한 영구자석 모터의 고정자 잇날 페어링 및 자석 극호각 설계에 의한 코깅 토오크의 저감 설계)

  • Eom, Jae-Bu;Hwang, Geon-Yong;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method to show that Fourier spectra of airgap permeance function and airgap MMF function are the most important design parameters to control cogging torque. To control these functions, stator pole shoe pairing and magnet arc design are proposed to minimize cogging torque. As for optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively.

A Study of Flat Panel TV Stands Design (플랫 패널 TV 스탠드 디자인 개발에 관한 연구)

  • Chang, Yub;Kim, In-Sub
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.22-32
    • /
    • 2008
  • Revolution of software and hardware technology changed TV from cathode-ray tube to a LCD or PDP. And this change calls for change of TV decoration cabinet. The flat panel TV stands market is very a world-wide enormous size with the function which is various and breed and design is forming. Nonetheless, Our flat panel TV stands production method and technique is to a phase which imitates the product of the foreign nation which precedes. Currently our country TV / AV decoration cabinet is staying to only the acceptance function which is simple. Consequently, the development of the new flat panel TV stands that matches in the house culture which is modernized with applies the visual effect which is various, effective design and function is necessary. The fact that it develops the product which equips the function characteristic which is new and convenient is objective of sample planning.

  • PDF

Vibration Analysis of Micro Speaker Diaphragm (마이크로 스피커 다이어프램의 진동해석)

  • Hong, D.K.;Woo, B.C.;Ahn, C.W.;Han, G.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

An Approximate Calculation Model for Electromagnetic Devices Based on a User-Defined Interpolating Function

  • Ye, Xuerong;Deng, Jie;Wang, Yingqi;Zhai, Guofu
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.378-384
    • /
    • 2014
  • Optimization design and robust design are significant measures for improving the performance and reliability of electromagnetic devices (EMDs, specifically refer to relays, contactors in this paper). However, the implementation of the above-mentioned design requires substantial calculation; consequently, on the premise of guaranteeing precision, how to improve the calculation speed is a problem that needs to be solved. This paper proposes a new method for establishing an approximate model for the EMD. It builds a relationship between the input and output of the EMD with different coil voltages and air gaps, by using a user-defined interpolating function. The coefficient of the fitting function is determined based on a quantum particle swarm optimization (QPSO) method. The effectiveness of the method proposed in this paper is verified by the electromagnetic force calculation results of an electromagnetic relay with permanent magnet.

Optimum Design of Six-Bar Function Generators with Prescribed Functions Defined for the Entire Motion Range (전체 운동가능구간에 걸쳐 함수가 정의된 6절 함수발생장치의 최적설계)

  • Lee, Sang-Choon;Shin, Jae-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2527-2534
    • /
    • 2002
  • An efficient method is proposed for the design of six-bar function generators with complex design tasks. Especially, the desired functions are defined for the entire motion ranges of the input variables. The design problem is defined as a nonlinear optimization problem. A concept of a weighted structural error is introduced for the definition of the objective function. Also simple branch identifiers are incorporated to eliminate the branch problems commonly encountered in a typical linkage synthesis problem. Two example problems of designing a Watt-II type double dwell mechanism and a Stephenson-III type double beat-up mechanism are demonstrated with numerical results. Constraints such as on the Grashof conditions and on the transmission angles are included for practical solutions.