• Title/Summary/Keyword: Design Flow Rate

Search Result 2,072, Processing Time 0.026 seconds

Assessment of the performances of a heat exchanger in a light helicopter

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.469-482
    • /
    • 2015
  • This study has the aim to develop a numerical design regarding the position and the inner performances of a heat exchanger in a light helicopter. the problem was to find first of all the best position of the heat exchanger inside the engine vane in order to maximize the air flow rate capable to pass through the heat exchanger section. It is to be said that the only air contribution in the vane comes from the opening present in the roof under the main rotor. The design has been performed by means of the commercial code Fluent and using the well known grid generator ICEM CFD. Different positions are first investigated so to establish the best one. Subsequently, different areas of the opening on the roof have been considered in order to maximize even more the flow rate in the heat exchanger that was not sufficient based on the first guess of velocity, as aforementioned. At the end interesting design results are presented and discussed by contours of fields and values.

On the Design Parameters of Gerotor Hydraulic Motors (제로터 유압 모터의 설계 변수에 관한 연구)

  • 김충현;김두인;안효석;정태형;이성철
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 1999
  • A Gerotor hydraulic motor is a planar mechanism consisting of a pair of rotors one of which encloses another rotor. The motion of the inner-rotor relative to the outer-rotor is produced by the pressure difference between the adjacent chambers. A design method of inner-rotor tooth profile using unit tangential vectors is presented in this work. Based on the relationships derived, the influence of the eccentricity of inner-rotor and the radius of circular arc tooth on the flow rate, torque and curvatures were investigated. It was shown that the flow rate and mean torque is proportional to eccentricity, but inversely proportional to the radius of circular arc teeth. Also, the maximum value of the equivalent curvature is increased as the eccentricity and the radius of circular arc teeth increased.

Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside (스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석)

  • Park, Jun Hyuk;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

A Study of the Experiment and the Calculation Method on the Coolant Flow Rate of Engine and Vehicle Cooling System (엔진 및 차량냉각계의 냉각수유량 측정실험 및 계산방법에 관한 연구)

  • 오창석;유택용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the prediction method of coolant flow rates has been developed and applied to an engine and vehicle cooling system. The flow rate passing through each component of the system is very important parameter to evaluate the heat transfer process form the combustion gas to the coolant and the heat rejection process form the radiator /heater to the ambient air. However, the present study reveals that the measurement using the flowmeter fails to give practical flow rates due to its additive resistance. In contrast, the present method which uses the parallel and serial relationship of flow resistance proved to be a good tool to predict the real flow rates. It can be also used to design the cooling system in the incipient stage of engine/vehicle development . The procedure was coded to the computer program so as to use it flexibly and, in the future, to expand it into an independent design tool of the whole cooling system including the heat release and rejection.

  • PDF

Design of Dissolution Apparatus for the Flow-through Cell Method Based on the Low Pulsation Peristaltic Pump (저 맥동 연동 펌프 기반 플로우 스루 셀 방식 용출 장치 설계)

  • Zhao, Jun Cheng;Cheng, Shuo;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The emergence of the flow-through cell (FTC) method has made up for the limitations of previous dissolution test methods, but the high cost of the FTC dissolution devices have seriously hindered the progression of research and application of the FTC. This new design uses a peristaltic pump to simulate the sinusoidal flow rate of a piston pump. The flow profile of each peristaltic pump was sinusoidal with a pulsation of 120 ± 1 pulses per minute, and the flow rate ranged from 1.0 - 36.0 mL/min. The flow control of each channel was adjusted independently so the flow errors of the seven channels were close to 2%. The structure of the system was simplified, and the cost was reduced through manual sampling and immersing the FTC in a water bath. The dissolution rate of the theophylline and aminophylline films was determined, and good experimental results were obtained.

A Study on the Problem of Pressure and Flow Rate by Prescriptive Code Based Design of Fire Sprinkler System (사양위주 스프링클러설비 설계의 압력과 유량의 문제점에 대한 고찰)

  • Jeong, Keesin;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.14-19
    • /
    • 2013
  • National Fire Safety Code 103 regulates that all operating sprinkler in design area must be discharged 1 bar or more pressure and release 80 lpm or more flow rate as minimum criteria. NFSC103 also provides that the number of operating sprinkler in design area is 10, 20, 30 according to the building classification and the total flow rate is 800, 1,600, 2,400 lpm depending on 80 lpm per sprinkler. If sprinkler system is designed as above provisions, the pressure and the flow rate accordingly become smaller than the minimum criteria about 50 % sprinklers. It results in serious consequence that the purpose of sprinkler system as initial fire reaction equipment is failure. In order to solve these problems, It is desirable that Performance-based fire protection design, hydraulic calculation, is carried out to all sprinkler system.

A Fundamental Study on Offshore Structures of high pressure control valve (해양구조물용 고압 컨트롤 밸브에 대한 기초 연구)

  • Lee, Chi-Woo;Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.

A Study on Flow Analysis of Model Engine Coolant Flow Passage : Comparison with Experimental Data of Lotus Model and Flow Rate Control (엔진 냉각수 유동통로 모델에 대한 수치해석 : Lotus 모델의 실험 결과와의 비교 및 유량제어)

  • Cho, W.K.;Hur, N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.17-23
    • /
    • 1995
  • A numerical analysis on engine coolant is made by the use of FVM based general purpose 3 dimensional Navier-Stokes solver, TURB-3D. Numerical solutions are verified by comparison with the experimental data of Lotus model. The results show a good qualitative as well as quantitative comparison. Coolant flow rate control is attempted through adjusting the cross section area of passage base on the results of an original coolant passage. It is concluded from the results that the flow rate control is possible as attempted, and thus can be used in the real engine design.

  • PDF

Effect of Process Parameters on the Hardness and Wear Rate of Thermal Sprayed Ni-based Coatings (니켈기 경질 용사코팅의 경도 및 마모율에 미치는 공정조건의 영향)

  • Kim, K.T.;Kim, J.D.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • The various process parameters of thermal spray process affects on quality of Ni-based coatings. Thus, there is need to analyze the effect of process parameters on quality of Ni-based coatings. In this paper, the effects of process parameters on hardness and wear rate of Ni-based coatings were investigated using 4 design of experiments. First, the Ni-based coatings were fabricated according to $L_9(3^4)$ orthogonal array. The hardness tests and the wear tests were performed on the Ni-based coatings. The analysis of variance for the hardness and wear rate were carried out. As a results, the acetylene gas flow and the powder feed rate were identified as main factors effected on the hardness and the oxygen gas flow and the acetylene gas flow were identified as main factors effected on the wear rate. The full factorial experiments design with different levels was applied for investigation of effect of these main factors.