• Title/Summary/Keyword: Design Error

Search Result 5,382, Processing Time 0.037 seconds

Design and Performance Evaluation of Self-Localization with Landmarks

  • Masaki, Sano;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.1-155
    • /
    • 2001
  • The main contribution of this research is that it gives:(1) a rational criterion to select the best self-localizing method for a particular situation, and (2) an appropriate arrangement of the landmarks to minimize the error. In this paper, the authors propose a set of indices to evaluate the accuracy of the self-localizing methods, and the indices are derived from a sensitivity which is defined as the ratio of the localizing error to sensor error. And then, we compare the accuracy of self-localizing a mobile robot with landmarks based on the indices, and propose a rational way to minimize the localizing error.

  • PDF

Quantization error model of signal converter in strapdown inertial navigation system (스트랩다운 관성항법장치의 신호변환기 양자화 오차모델)

  • 정태호;송기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.131-135
    • /
    • 1991
  • A quantization error model is suggested for analog to frequency(A/F) converter in strapdown inertial navigation system(SDINS),which is characterized by some white noise exciting the state variables. Also, effects on the performance of SDINS by analog to digital(A/D) converter and A/F converter are analyzed and compared via covariance simulation. As a result, A/F converter turns out to be superior to the A/D converter with respect to the induced navigation error and the difficulty in circuit realization. The quantization error model developed in this paper appears to be useful for optimal filter design.

  • PDF

A study on a design of developed-ERES/WCS using the ASR and fuzzy set theory as a part of human interface technique (Human interface 기술의 일환으로서 ASR과 fuzzy set theory를 이용한 developed-ERES/WCS 설계에 관한 연구)

  • 이순요;이창민;박세권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.76-81
    • /
    • 1988
  • As a means of human interface, this study designs Developed-ERES/WCS with voice recognition capability and fuzzy set theory. In the advanced teleoperator system, when an error occurs on the automatic mode, the error is recovered after the automatic mode is changed into the manual mode intervened by a human. The purpose of this study is to reduce human work load and to shorten error recovery time during error recovery.

  • PDF

Volumetric Error Measurement and Calibration of Coordinate Measuring Machines Using a Ball-bar Artifact (Ball-Bar Artifact를 이용한 CMM의 공간 오차 측정 및 분석)

  • 구상서;이응석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.143-148
    • /
    • 2001
  • Volumetric error measurement and calibration of a coordinate measuring machine are studied by using a Ball-Bar artifact. Examples of the Ball-Bar design are shown using inbar materials and precision steel balls. Also, for the uncertainty error using the Ball-Bar is discussed. Method of Ball-Bar artifact and the analysis of the error vectors are proposed. Using the Ball-Bar data, we studied the method of volumetric errors ana]ysis of a coordinate measuring machine.

  • PDF

A Design on Multivariable Controller for Industrial Robot Manipulators (산업용 로봇 매니퓰레이터의 다변수 제어기 설계)

  • 한상완;홍석교
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.636-643
    • /
    • 1998
  • This paper is presents multivariable control scheme for industrial robot manipulators. The control scheme consists of two loops. The modeling error between linearized robot model and actual robot model is compensated in error compensation loop. The PID control loop is designed for pole assignment to stability of robot system and utilized for trajectory tracking. Alternatively computer simulation results are given for illustration purpose of suggested controller.

  • PDF

A New Approach to Multi-objective Error Correcting Code Design Method (다목적 Error Correcting Code의 새로운 설계방법)

  • Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.611-616
    • /
    • 2008
  • Error correcting codes (ECCs) are commonly used to protect against the soft errors. Single error correcting and double error detecting (SEC-DED) codes are generally used for this purpose. The proposed approach in this paper selectively reduced power consumption, delay, and area in single-error correcting, double error-detecting checker circuits that perform memory error correction. The multi-objective genetic algorithm is employed to solve the non -linear optimization problem. The proposed method allows that user can choose one of different non-dominated solutions depending on which consideration is important among them. Because we use multi-objective genetic algorithm, we can find various dominated solutions. Therefore, we can choose the ECC according to the important factor of the power, delay and area. The method is applied to odd-column weight Hsiao code which is well- known ECC code and experiments were performed to show the performance of the proposed method.

Max-based Analog Absolute Circuits with Small Error (작은 에러를 갖는 Max 회로 기반 아날로그 절대값 계산 회로)

  • Prasad sah, Maheshwar;Lin, Hai-Ping;Yang, Chang-Ju;Lee, Jun-Ho;Kim, Hyong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.248-255
    • /
    • 2009
  • Error is the major problem in communication system. Absolute circuit is one of the most important building blocks to implement for the error measurement in communication system as well as in analog circuit design. The main goal of this paper is to design a circuit with high accuracy and minimum error performance. In this paper, a new current mode absolute circuit is implemented to calculate the absolute value of two signals. This new design shows enhanced performance and low distortion over the previous implementation. The proposed circuit is simulated using Hspice and implemented in analog viterbi decoder. It is very suitable for implementing in error calculation for the large scale integrated circuit. Hspice simulation results of previous and new one circuit are reported.

Analysis of SAR Image Quality Degradation due to Pointing and Stability Error of Synthetic Aperture Radar Satellite (위성체 지향 및 안정화 오차로 인한 영상레이더 위성 영상 품질 저하 해석)

  • Chun, Yong-Sik;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.445-458
    • /
    • 2008
  • Image chain analysis of synthetic aperture radar (SAR) satellite is one of the primary activities for satellite design because SAR image quality depends on spacecraft bus performance as well as SAR payload. Especially, satellite pointing and stability error make worst effect on the original SAR image quality which is implemented by SAR payload design. In this research, Image chain analysis S/W was developed in order to analyze the SAR image quality degradation due to satellite pointing and stability error. This S/W consists of orbit model, attitude control model, SAR payload model, clutter model, and SAR processor. SAR raw data, which includes total 25 point targets in the scene of $5km{\times}5km$ swath width, was generated and then processed for analysis. High resolution mode (spotlight), of which resolution is 1m, was applied. The results of image chain analysis show that radiometric accuracy is the most degraded due to the pointing error. Therefore, the successful design of attitude control subsystem in spacecraft bus for enhancing the pointing accuracy is most important for image quality.

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.