• Title/Summary/Keyword: Design Cost

Search Result 8,534, Processing Time 0.036 seconds

Design and Structural Analysis on the Open and Close Hinge for Complex Machine (복합기 커버 개폐용 힌지의 설계와 구조 해석)

  • Yun, Yeo-Kwon;Yang, Kwang-Mo;Kim, Do-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • As all kind of industry has developed, metal structure and machine instrument use bolt, pin, rivet and welding for assembly and combination. For pin and hinge, dimension accuracy is crucial to keep the operation and safety of the structure and machine instrument. In case of complex machine, the hinge for cover open-loop system is one of the significant design elements. Most of the hinges are being imported and assembled sine they give high technology development cost for its unit cost position. The reason is that the localization of hinge is inadequate. As the demand increase and the necessity of localization grow, it is now more important than ever to develop low cost structure. By the low cost structure, a new technology could be obtained for electronic product and structural hinge since it would enable for complex machine hinge to be guaranteed, technologically. Open-loop hinge is the link type and designed for the structure to keep constant open-loop. And, the hinge is examined in design stability by finite element analysis method. In this paper, the operation result is presented when the hinge for complex machine open-loop is designed for link type structure.

Optimizing Bi-Objective Multi-Echelon Multi-Product Supply Chain Network Design Using New Pareto-Based Approaches

  • Jafari, Hamid Reza;Seifbarghy, Mehdi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.374-384
    • /
    • 2016
  • The efficiency of a supply chain can be extremely affected by its design which includes determining the flow pattern of material from suppliers to costumers, selecting the suppliers, and defining the opened facilities in network. In this paper, a multi-objective multi-echelon multi-product supply chain design model is proposed in which several suppliers, several manufacturers, several distribution centers as different stages of supply chain cooperate with each other to satisfy various costumers' demands. The multi-objectives of this model which considered simultaneously are 1-minimize the total cost of supply chain including production cost, transportation cost, shortage cost, and costs of opening a facility, 2-minimize the transportation time from suppliers to costumers, and 3-maximize the service level of the system by minimizing the maximum level of shortages. To configure this model a graph theoretic approach is used by considering channels among each two facilities as links and each facility as the nodes in this configuration. Based on complexity of the proposed model a multi-objective Pareto-based vibration damping optimization (VDO) algorithm is applied to solve the model and finally non-dominated sorting genetic algorithm (NSGA-II) is also applied to evaluate the performance of MOVDO. The results indicated the effectiveness of the proposed MOVDO to solve the model.

BUMPLESS FLIP CHIP PACKAGE FOR COST/PERFORMANCE DRIVEN DEVICES

  • Lin, Charles W.C.;Chiang, Sam C.L.;Yang, T.K.Andrew
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.219-225
    • /
    • 2002
  • This paper presents a novel "bumpless flip chip package"for cost! performance driven devices. Using the conventional electroplating and etching processes, this package enables the production of fine pitch BGA up to 256 I/O with single layer routing. An array of circuitry down to $25-50{\mu}{\textrm}{m}$ line/space is fabricated to fan-in and fan-out of the bond pads without using bumps or substrate. Various types of joint methods can be applied to connect the fine trace and the bond pad directly. The resin-filled terminal provides excellent compliancy between package and the assembled board. More interestingly, the thin film routing is similar to wafer level packaging whereas the fan-out feature enables high lead count devices to be accommodated in the BGA format. Details of the design concepts and processing technology for this novel package are discussed. Trade offs to meet various cost or performance goals for selected applications are suggested. Finally, the importance of design integration early in the technology development cycle with die-level and system-level design teams is highlighted as critical to an optimal design for performance and cost.

  • PDF

Cost-Efficient LTE RAN Design Methodology and Case Study for Developing Countries (개도국 LTE 망의 비용 효율적인 RAN 설계 방법 및 사례 분석)

  • Ko, Kiyoung;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.358-365
    • /
    • 2017
  • In order for developing countries to design and deploy Long Term Evolution (LTE) network in a cost-efficient manner, the differentiated way of technological design and deployment methods are necessary as compared to those for advanced countries. This paper focused on Radio Access Network (RAN) design methodology for developing countries that consists of major part of the network cost. To verify the effectiveness of the suggested design methodology, a Korean telecom company A's actual design experience in an African developing country was examined.

The Structural Design of a Large Oil Tanker based on the CSR by Considering the Web Arrangement and Material Property (웨브 배치 및 재질 변화를 고려한 CSR 기반 대형유조선의 구조설계 연구)

  • Na, Seung-Soo;Yum, Jae-Seon;Kim, Yoon-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.598-605
    • /
    • 2010
  • The structural design of oil tankers and bulk carriers should be performed based on the Common Structural Rules(CSR) which were recently established by the International Association Classification Societies(IACS). At first, in the structural design viewpoint, the scantling and hullweight based on the CSR should be compared with those of existing rules, and then a minimum weight/cost design should be performed by considering the variation of the number of web and the material property. In this study, the optimum web space and material property will be proposed by performing a minimum weight/cost design of a large oil tanker, and the results will be compared with those of existing ship. The longitudinal members are determined by SeaTrust-Holdan developed by the Korean Register of Shipping(KR), and the transverse members are determined by NASTRAN and PULS.

A Conceptual Design and Feasibility Analyses of an Automated Pothole Patching Machine (도로면 포트홀 유지보수 자동화 장비의 개념디자인 및 경제적 타당성 분석에 관한 연구)

  • Yeom, Dong Jun;Yoo, Hyun Seok;Kim, Young Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.65-74
    • /
    • 2018
  • The primary objective of this study is to develop a conceptual design of automated pothole patching machine that improves the conventional work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review, 2)selection of element technology for conceptual design, 3)deduction of work process and conceptual design, 4)life cycle cost analysis of the conceptual design. As a result, X-Y table telescopic manipulator, pothole patching end effector, realtime pothole recognizer, 3D pothole volume profiler, automated pothole patching machine controller are selected as core technologies. Furthermore, a conceptual design and working process of an automated pothole patching machine are developed based on the core technologies. According to the life cycle cost analysis result, the cost of the automated method was 38.3% less than that of the conventional method, and the economic efficiency was also superior(ROR 77.1%, Break-even Point 23.8month). It is expected that the application range and impact on the construction industry will be enormous due to the increasing trend of road maintenance market.

CO2 emissions optimization of reinforced concrete ribbed slab by hybrid metaheuristic optimization algorithm (IDEACO)

  • Shima Bijari;Mojtaba Sheikhi Azqandi
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.295-307
    • /
    • 2023
  • This paper presents an optimization of the reinforced concrete ribbed slab in terms of minimum CO2 emissions and an economic justification of the final optimal design. The design variables are six geometry variables including the slab thickness, the ribs spacing, the rib width at the lower and toper end, the depth of the rib and the bar diameter of the reinforcement, and the seventh variable defines the concrete strength. The objective function is considered to be the minimum amount of carbon dioxide gas (CO2) emission and at the same time, the optimal design is economical. Seven significant design constraints of American Concrete Institute's Standard were considered. A robust metaheuristic optimization method called improved dolphin echolocation and ant colony optimization (IDEACO) has been used to obtain the best possible answer. At optimal design, the three most important sources of CO2 emissions include concrete, steel reinforcement, and formwork that the contribution of them are 63.72, 32.17, and 4.11 percent respectively. Formwork, concrete, steel reinforcement, and CO2 are the four most important sources of cost with contributions of 67.56, 19.49, 12.44, and 0.51 percent respectively. Results obtained by IDEACO show that cost and CO2 emissions are closely related, so the presented method is a practical solution that was able to reduce the cost and CO2 emissions simultaneously.

Comparative Study on Determining Highway Routes (도로의 최적노선대 선정방법 비교 연구)

  • Kim, Kwan-Jung;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.159-179
    • /
    • 2006
  • By using the current road design method that is based on the regulation about structure and facilities standard of the road and the route plan guide of a national road and the alignment optimization road design method which is studied in the inside and outside of country, this study operate the route plan of the sample study and compare and analysis the route character, consequently the current design method has local optimization that is formed the plan by the stage and the section. Alignment optimization road design has the system optimal route search. But cost function has limite that caused by construction parameter that is not included in cost function. So we design a road route included cost function in main fields. As a result, we obtain a realistic and economically road route. The alignment optimization road design model has to be made up some problems, like the change of vertical gradient in the tunnel section, though this defects it has a lot of merits as a geometric design tool, especially in the feasibility study and the scheme design.

  • PDF

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

Comparison of Cost Performance for Delivery Methods on Public Construction Projects (공공 건설공사 발주방식에 따른 비용성과 비교연구)

  • Lee, Yoo Sub;Kang, Tai Kyung;Shin, Eun Young;Park, Wonyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2575-2582
    • /
    • 2013
  • In the delivery systems for public construction works, design-build methods such as turn-key and alternative have contributed to improving the quality of structures and developing the construction technology. However, it is pointed out that construction based on a design-build method is likely to waste a budget due to its higher contract price than construction based on a design-bid-build method. Other issues such as contract monopoly, bid rigging and deliberation irregularity in design-build. Since there are not much works have been accomplished to comparatively analyze the actual performance and effect based on delivery methods, discussing and judging the performance and effect of each deliver method with limited information could lead to an error. Thus, this study by extensively investigates the actual project cost data, ranging from contract price to the construction cost of the public construction works and comparatively analyzed the characteristics of each delivery method about cost structure and fluctuation trend. This work is expected to assist stake-holders in properly understanding delivery systems for public construction works and promoting their efficient management.