• Title/Summary/Keyword: Design Cost

Search Result 8,470, Processing Time 0.039 seconds

Suggestion and Verification of Assessment model on Construction-Cost of Steel Bridge in Project Performance Phases

  • Kab-Soo Kyung;Hye-Yeon Park;Sin-Hwa Kang;Eun-Kyoung Jeon
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.606-615
    • /
    • 2009
  • Estimating the reasonable construction-cost according to the construction phase in public construction is an important element for securing and executing a national budget efficiently. As a general rule, the predetermined cost of construction is estimated at the end of the design of the target structure. Therefore, it seems to be a considerably difficult problem to estimate the approximate cost of construction, only with its basic information of the bridge in the design planning phase and the early design stage where we can not have specific detailed-section of the target structure. In this paper, we present the calculation of construction-cost in the planning phase based on the analysis of factors affecting the cost of construction conducted in the previous study. Beside, to estimate the cost of construction in early design phase, we would like to present the calculation of construction-cost in the early design phase by executing the analysis of data collected from 61 steel box bridges. It was found from the result of study that the estimated cost of construction gained by the calculation of construction-cost in this paper reduces the error between the real cost of construction and that by the existing method of using.

  • PDF

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

Factors Clustering Approach to Parametric Cost Estimates And OLAP Driver

  • JaeHo, Cho;BoSik, Son;JaeYoul, Chun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.707-716
    • /
    • 2009
  • The role of cost modeller is to facilitate the design process by systematic application of cost factors so as to maintain a sensible and economic relationship between cost, quantity, utility and appearance which thus helps in achieving the client's requirements within an agreed budget. There are a number of research on cost estimates in the early design stage based on the improvement of accuracy or impact factors. It is common knowledge that cost estimates are undertaken progressively throughout the design stage and make use of the information that is available at each phase, through the related research up to now. In addition, Cost estimates in the early design stage shall analyze the information under the various kinds of precondition before reaching the more developed design because a design can be modified and changed in all process depending on clients' requirements. Parametric cost estimating models have been adopted to support decision making in a changeable environment, in the early design stage. These models are using a similar instance or a pattern of historical case to be constituted in project information, geographic design features, relevant data to quantity or cost, etc. OLAP technique analyzes a subject data by multi-dimensional points of view; it supports query, analysis, comparison of required information by diverse queries. OLAP's data structure matches well with multiview-analysis framework. Accordingly, this study implements multi-dimensional information system for case based quantity data related to design information that is utilizing OLAP's technology, and then analyzes impact factors of quantity by the design criteria or parameter of the same meaning. On the basis of given factors examined above, this study will generate the rules on quantity measure and produce resemblance class using clustering of data mining. These sorts of knowledge-base consist of a set of classified data as group patterns, of which will be appropriate stand on the parametric cost estimating method.

  • PDF

Optimum Life Cycle Cost Design of Steel Box Girder Bridges (강상형교의 최적 Life Cycle Cost 설계)

  • 조효남;민대홍;김구선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.151-158
    • /
    • 1998
  • This paper presents an optimal decision model for minimizing the life-cycle cost of steel box girder bridges. The point is that it takes into account service life process as a whole, and the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs and expected failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. The optimal solution identifies those values of the decision variables that result in minimum expected total cost. The performance constraints in the form of flexural failure and shear failure are those specified in the design code. Based on extensive numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on life-cycle cost approach proposed in this study provides a lot more rational and economical design, and thus the proposed approach will propose the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

A Simple Interactive 3D Interior Design Application for Living Room - Cost Management

  • Winnie, Chin;Hui, Saw Seow;Gee, Yap Seok
    • Journal of Multimedia Information System
    • /
    • v.4 no.3
    • /
    • pp.157-162
    • /
    • 2017
  • The title of this project is "A Simple Interactive 3D Interior Design Application for Living Room - Cost Management", focusing on developing an application that enables costing and designing to be executed concurrently in interior design phases. This is because any changes made at costing phase after design phase is completed, it will potentially lead to unnecessary increase in cost and time. Therefore, the objective of this project is aimed to devise a cost management module to be included in the proposed application, allowing interior designer to make cost-based decision at the designing phase itself. This can be achieved through its proposed functions which include total cost update, budget management, cost estimator calculator and material list generation. The methodology being proposed in this project is Prototyping Development, categorized under Rapid Application Development (RAD), by starting off with planning, analysis, design and implementation phases are performed concurrently and repeatedly in a cycle to produce a prototype until the application is completed. In the end of this project, the developed prototype is expected to contribute a better solution towards cost management in interior design.

Analyzing Data for Development of Structures Cost Estimating Model - Focused on Government Building Project - (건축 구조체 공사비 산정모델 개발을 위한 데이터 분석 - 공공청사를 중심으로 -)

  • Kim, Soo-Min;Cho, Jae-Ho;Lee, Jong-Sik;Chun, Jae-Youl
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.212-215
    • /
    • 2008
  • When managers predict exact construction cost at early stage and design phase, they can reduce construction cost in a more efficient way than to predict at construction stage. But present of public construction cost estimation and management almost after the construction documents design phase. Therefore, construction cost management in the early stage and schematic design phase to generally use approximate estimating is not correct. Accordingly, this study analyze problem of current cost estimating method and a concrete cost plans make using case information of actual cost to analyze in schematic design phase. Possible to check going on the suitable design, this study conducts the preliminary research for the development of cost estimating model.

  • PDF

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

Web-Based Cost Planning Program for High-Rise Office Building (고층 사무소건축의 공사비계획을 위한 웹 기반 개산견적 프로그램)

  • Kim Ki-Hong;Park Chan-Sik;Chang Sun-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.2 s.24
    • /
    • pp.69-79
    • /
    • 2005
  • The Purpose of cost Planning at the early Phase of construction Projects is to provide the clients with the appropriate cost information during the design decision-making process. Therefore, the cost planning process is expected not only to predict projects' cost accurately but also closely to coordinate with the design decision-making activities. This paper proposes a new cost planning method for the effective and efficient directions relating a design decision-making process. Strategies for this method are i ) to utilize elemental cost breakdown system, and ii ) to apply probabilistic distribution theories. Based on these strategic direction, this paper proposed a probabilistic cost planning model for high-rise office building projects. The suggested model provides appropriate cost information to meet clients limited budget and various project' requirements during the design decision-making process. This study is based on probabilistic distribution variables theories and the range estimating technique. This study also develops a web-based software program in order to apply the proposed cost planning model effectively in high-rise of office building construction practices.

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri;Swarup K. Barman
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.