• 제목/요약/키워드: Design Case Analysis

검색결과 5,172건 처리시간 0.035초

지구단위계획상의 경관계획요소에 대한 심리적 반응 (The Psychological Reaction of Landscape Design Elements on the District Unit Plan(DUP))

  • 정태일;오덕성
    • 한국조경학회지
    • /
    • 제32권3호
    • /
    • pp.76-90
    • /
    • 2004
  • The purpose of this study is to extract landscape design elements regulation of the District Unit Plan(DUP) in new town areas, and to find out characteristics in terms of urban design elements in comparison with the psychological and physical aspects. For this purpose, we reviewed urban design elements and design elements in terms of the landscape by DUP and analyzed the activation of landscape on the selected case-area by interviewing experts such as planners, public officials, and professors in the department of urban planning and landscape, as well as the university students. The analysis framework for the case-study consists of 4 components: the section of region, street, building, open space, etc. The new development areas in Daejeon Metropolitan City was chosen as the case study area, because they have been developed by DUP regulations. As a result of this study, we can extract characteristics of landscape. The results indicate that `skyline design',`view corridor design',`landscape design',`street furniture design' and `building design(form, height, color, and elevation)' are the key planning and design factors influencing differences in the landscape preference. This research identifies that there are no detailed planning and design guidelines adopted within the four case study areas in Daejeon for regulating the characteristics of skyline, planting and street furniture while detailed guidelines established for density, building height and site layout. Considering their significant correlation with the level of landscape preference, this study suggests that detailed planning and design guidelines for the characteristics of skyline, rooftop and streetscape should be established in future DUP.

An Interval Approach for Design and Analysis of Mechanical Systems with Uncertainties

  • Shin, Jae-Kyun;Li Chen;Jang, Woon-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.5-14
    • /
    • 2002
  • This paper addresses the challenges of dealing with uncertainties based on interval analysis. An interval approach is proposed on the basis of Boundary Selection Method (BSM) for treating systems of linear interval equations in the presence of columnwise dependencies. An iterative procedure is developed for the problem solving where uncertainties are characterized in the form of interval quantities. An applied example is used to illustrate effectiveness and usefulness of the proposed approach. This new method can be applied for such circumstances that involve finite element analysis of structures, inverse dynamic analysis of mechanisms, and worst case design studies in the presence of the uncertainties.

LCC분석에 의한 설비시스템의 최적화 방안에 관한 연구 - G구 구민회관 및 구의회청사 사례 - (A Study on Optimized Design Decision of Building Service Systems Based on a Life-Cycle Cost Analysis - A Case Study on Community Center and Congress Hall of a Local Government -)

  • 최성호;차병주;김상민;이승복
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.134-142
    • /
    • 2002
  • LCC (Life-Cycle Cost) analysis is a practical method and a guideline for evalua-ting the economic performance of building service systems. By using the LCC analysis, the most cost-effective design decision can be made, which has the lowest LCC during the project study period among the various design alternatives. The present case shows an example of appro-priate use of the LCC analysis, by demonstrating the procedures of decision making among at-tarnative building HVAC systems at community center and congress hall of a local government.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

Thermal Analyses of Deep Geological Disposal Cell With Heterogeneous Modeling of PLUS7 Spent Nuclear Fuel

  • Hyungju Yun;Min-Seok Kim;Manho Han;Seo-Yeon Cho
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.517-529
    • /
    • 2023
  • The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.

도시형 자기부상열차의 기능분석을 이용한 사양간 추적성 도출 연구 (A Study to Derive Traceability between Specification by Using Functional Analysis in Case of Urban MAGLEV Train)

  • 정경렬;박철호;최준호;송선호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1880-1886
    • /
    • 2008
  • Recently, a railroad system has a big and complicated structure of specification. Therefore, traceability between specification need to be identified for design change management and this is many engineer's concerns. Traceability means technical relationship. This is to trace other specification or component connect with relevant problem in case some problem should be examined. Traceability between functional specification can be proved through functional analysis essentially. This study will introduce an application method of functional analysis in the case of practical use project of MAGLEV train. And we propose the guide to identify traceability between function through functional analysis.

  • PDF

Identification of Demand Type Differences and Their Impact on Consumer Behavior: A Case Study Based on Smart Wearable Product Design

  • Jialei Ye;Xiaoyou He;Ziyang Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.1101-1121
    • /
    • 2024
  • Thorough understanding of user demands and formulation of product development strategies are crucial in product design, and can effectively stimulate consumer behavior. Scientific categorization and classification of demands contribute to accurate design development, design efficiency, and success rates. In recent years, e-commerce has become important consumption platforms for smart wearable products. However, there are few studies on product design and development among those related to promoting platform product services and sales. Meanwhile, design strategies focusing on real consumer needs are scarce among smart wearable product design studies. Therefore, an empirical consumer demand analysis method is proposed and design development strategies are formulated based on a categorized interpretation of demands. Using representative smart bracelets from wearable smart products as a case, this paper classifies consumer demands with three methods: big data semantic analysis, KANO model analysis, and satisfaction analysis. The results reveal that analysis methods proposed herein can effectively classify consumer demands and confirm that differences in consumer demand categories have varying impacts on consumer behavior. On this basis, corresponding design strategies are proposed based on four categories of consumer demands, aiming to make product design the leading factor and promote consumer behavior on e-commerce platforms. This research further enriches demand research on smart wearable products on e-commerce platforms, and optimizes products from a design perspective, thereby promoting consumption. In future research, different data analysis methods will be tried to compare and analyze changes in consumer demands and influencing factors, thus improving research on impact factors of product design in e-commerce.

태양전지를 활용한 도시디자인 사례분석 연구 : CIGS 박막 태양전지의 활용을 중심으로 (Urban Design cases study analysis using solar cell : Focusing on the use CIGS Thin Film Solar cell)

  • 박지훈;남원석;장중식
    • 한국융합학회논문지
    • /
    • 제11권3호
    • /
    • pp.163-170
    • /
    • 2020
  • 본 연구는 최근 급속도로 성장하고 있는 태양전지를 활용한 국내외 도시 디자인의 현황과 동향을 파악하고, 사례 분석을 토대로 향후 진행할 연구과제인 CIGS 박막 태양전지를 활용한 도시 디자인 제안의 긍정적인 측면과 시사점을 파악하고자 하였다. 연구 방법은 문헌연구를 통하여 이론적 고찰을 진행하였고, 이후에 국내외 태양전지를 활용한 도시 디자인의 현황과 동향을 파악하여 사례를 조사·분석하였다. 그 결과 태양전지를 활용한 도시 디자인은 꾸준히 증가하고 있음을 확인하였으며, 주변 환경과의 조화, 실내외 동반 미관창출, 색상의 활용 등의 시각적인 변화를 통하여 심미적 도시 미관창출의 긍정적 효과가 있는 것을 알 수 있었다. 이러한 시사점을 바탕으로 CIGS 박막 태양전지를 도시 디자인에 활용하였을 때 올 수 있는 기대효과를 제시하고, 향후 진행할 CIGS 박막 태양전지를 활용한 도시 디자인 제안에 대한 방향성과 의의를 확인하고자 한다.

고공 강하용 수직풍동의 개념설계에 관한 연구 (A Study on the Concept Design of Vertical Wind Tunnel for Skydiver)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes a case study on the design factor analysis of vertical wind tunnel for skydiver's training or experiencing of paradropping exercise in the air. The case study of vertical wind tunnel design is to provide the knowledges on effects of parameter's variation when it is applied to overall or partial duct of tunnel circuit. The analysis of design parameters based on pressure loss are produced one by one through the tunnel components from the flight chamber because the wind tunnel must satisfy the requirement of flight chamber such as flow speed, quality and quantity. Results shows the various effects of parameter variation with pressure loss in the wind tunnel circuit. Pressure loss should be based on the determination of fan and power system which can be selected from market or new design.