• Title/Summary/Keyword: Design Axiom

Search Result 54, Processing Time 0.032 seconds

Evaluation Methodology Development of Disassembly Through Axiomatic Design (공리적 설계를 이용한 분해성 평가방법 개발)

  • Kim, Young-Kyu;Cho, Kyu-kab;Moon, Yong-rak;Cha, Sung-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.197-202
    • /
    • 2001
  • This paper proposes a design method for improving the disassembly by using the axiomatic approach. A product developer must design disassembly as well as assembly when designing the structure of a product. Axiomatic approach is a design tool that optimizes design. In this paper design evaluation method using information axiom sets impact variables and value function. As a result, examining the relationship between the functional requirements and evaluating the information can optimize designs.

  • PDF

Optimal Design of Water Jet Nozzles Utilizing Independence Design Axiom (독립공리 설계기법을 이용한 LCD 세정노즐의 최적설계)

  • Shin, Hyun-Suk;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1240-1247
    • /
    • 2003
  • Water jet nozzle for LCD has been used as a wet cleaning process in many industries. It is necessary for the nozzle to consider cleaning effect and flux. In this paper, we applied the bubble dynamic theory(Rayleight-Plesset equation) to improve the cleaning efficiency. Generally, Rayleigh-Plesset equations for cavitation bubbles are used in analyzing computer simulation for caviting flows. Burst of bubbles causes potential energies and we can use these energies to remove organic and inorganic compounds on the LCD. Therefore, it is necessary to analyze the bubble generations and axiomatic design by computational fluid dynamics(CFD). By comparing the weight matrix of neural networks to the design matrix of axiomatic design, we propose methods to verify designs objectively. The optimal solution could be deduced by the regression analysis using the design parameters.

  • PDF

Optimization Method for a Coupled Design, Considering Robustness (강건성을 고려한 연성설계의 최적화 방법)

  • Kang, Dong-Heon;Song, Byoung-Cheol;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2008
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Technology Valuation Method Selection using Axiomatic Design (공리적 설계를 이용한 기술가치평가방법의 선정)

  • 문병근;조규갑
    • Proceedings of the Technology Innovation Conference
    • /
    • 2003.02a
    • /
    • pp.191-199
    • /
    • 2003
  • It is critical to select an appropriate technology valuation method when the characteristics of a technology and valuation environment are variable. To ensure high quality decision making when selecting a technology valuation method, it is necessary to understand the principles of a good technology valuation method, and define and apply a decision making theory for selecting an optimal method. The authors propose that Axiomatic Design Principles can be applied as a decision making theory. In order to apply Axiomatic Design for this problem, this paper describes four domains(customer, functional, physical, and process domain) and four axioms(independence, information, cost, time axiom) for the decision making process for the optimal technology valuation method. The result of this study will contribute flexibility to the dynamic technology valuation process.

  • PDF

Axiomatic Approach for desing Appraisement and Development DVD (II) (DVD 설계평가 및 개선을 위한 공리적 접근 (II))

  • Moon, Yong-Rak;Cha, Sung-Woon;Heo, Bo-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • In order to execute the major role as the high density large capacity data storage device, which is one of the major characteristics of DVD(Digital Versatile Disk), there must be a method to effectively absorb the external impact or internal vibration. The DVD which has been developed until now tries to control two different types of vibrations, using only one absorber. But this goes against the independence Axiom of Axiomatic Approach which makes the design to be coupled. And in fat most of the malfunctions occurring during DVD data input/output is due to impact or vibration. Therefore in this paper, the vibration absorption system and operation reliability of DVD will be evaluated with the Axiomatic Approach and plans and feasibility to design an improved vibration absorption system will be provided also based on the Axiomatic Approach.

  • PDF

Decoupling Process of a Coupled Design in Axiomatic Design Using the TRIZ (공리적 설계에서 트리즈를 이용한 연성설계의 비연성화 과정)

  • Shin, Gwang-Seob;Kim, Yong-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.77-88
    • /
    • 2007
  • Axiomatic Design has been developed as a general design framework during past two decades and TRIZ has been developed for a design tool over 50 years. Axiomatic design is quite excellent in that design should be decoupled. When a design matrix is established, the characteristics of the design are identified according to the coupling properties. If the design is coupled, a decoupling process should be found. However, axiomatic design does not specifically indicate how to decouple a coupled design. In this research, the coupling manner is classified into six patterns. Each pattern could be solved by an appropriate TRIZ module. A table, which matches the coupling pattern and a TRIZ module, is proposed for effective application of the two design theories. The decoupling ideas are proposed by using TRIZ modules. When the number of decoupled designs is more than one, the engineer should select the final idea. The proposed method is applied to practical cases such as a tape feeder and a beam adjuster of the laser marker.

Valuation and Improvement on Micro-gripper System by Axiomatic Design (공리적 설계를 이용한 마이크로 그립퍼 시스템의 평가 및 개선)

  • Jeon Jong Hyup;Park Jong Kyu;Moon Won Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.164-169
    • /
    • 2005
  • The micro-gripper system is one of the systems that should be improved in the respect of performance for practical usage. In the previous works, the important issues are considered and presented using axiomatic design approach. In this paper, the functional requirements and design parameters are evaluated in order to improve the performance and efficiency of the system. The evaluation is a very difficult task since many variables are related to the outcomes. To provide a basis for correct design decisions, axiomatic design principles have been advanced. Since the framework of axiomatic design makes design issues easier to understand when they are analyzed, we used those as an evaluation tool. The object of the system is to handle micro-size parts. Main device is a micro-gripper using two bender-typed and one stack-typed PZTs as actuators. And it has three tips made of tungsten wires fur holding function. Also the system must satisfy other functional requirements for appropriate handling performance. The results of this study show design improvements of micro-gripper system such as structural change of gripper, additional element, and integration of physical parts. Axiomatic design guides presented suitable design parameters corresponding to functional requirements and made the design elements improve through diagrams of whole system.

Design of Automobile Seat for Regulations using Axiomatic Design (공리적 설계에 의한 안전기준을 만족하는 자동차용 시트 설계)

  • Kang Byung-Soo;Jeong a-young;Shin Moon-Kyun;Park Gyung-jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.24-34
    • /
    • 2005
  • The automobile seat must satisfy various safety regulations for the passenger's safety. In many design practices, each component is independently designed by concentrating on a single related regulation. However, since multiple regulations can be involved in a seat component, there may be design confliction among the various safety regulations. Therefore, a new design methodology is required to effectively design an automobile seat. The axiomatic approach is employed for considering multiple regulations. The Independence Axiom is used to define the overall flow of the seat design. Functional requirements (FRs) are defined by safety regulations and components of the seat are classified into groups which yield design Parameters (DPs). The classification is carried out to have independence in the FR-DP relationship. Components in a DP group are determined by using orthogonal away of the design of experiments (DOE). Numerical analyses are utilized to evaluate the safety levels by using a commercial software system for nonlinear transient finite element analysis.

Development of Evaluation Method for Performance of Weapon System using Axiomatic Design based Inner Dependence AHP (공리적설계 기반의 내부종속 AHP를 이용한 국방무기 해외 구매사업의 무기성능 평가방법 개발)

  • Cho, Hyunki;Kim, Woo-Je
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.45-65
    • /
    • 2012
  • Test and evaluation of weapon system is an important task to evaluate the performance of overseas weapon system purchasing project. Especially, quantitative evaluation of performances is hardly completed in defense projects where multiple criteria are conflicted each other. In order to solve this problem, we apply Axiomatic Design (AD) and Inner Dependence AHP method. First, finite functional requirements (FRs) are categorized in hierarchy structure by selecting proper design parameters (DPs) to implement their corresponding FRs. If there are no ways to select DPs when design is coupled between FRs and DPs, then inner dependence is allowed to overcome the strict rule of independence in AHP. Second, the weights of DPs are calculated by applying both Inner Dependence AHP method for coupled design and normal AHP method for uncoupled or decoupled design. Finally, information axiom of AD is applied to the proposed weapon systems by calculating information contents for all parameters. Weapon system with minimum sum of information contents is considered as the best solution. The proposed method in this study should be used in multiple criteria decision making problems involving various conflicting criteria.