• Title/Summary/Keyword: Design Automation

Search Result 1,828, Processing Time 0.031 seconds

A Survey on the Status of Shoe-last Production for Handmade Shoes - Focused on Seongsu-dong Complex - (수제화 라스트 생산 현황 조사 - 성수동 지역을 중심으로 -)

  • Hong, Eun-Hee;Park, Myung-Ja;Jeong, Jae-Chul;Uh, Mi-Kyung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.4
    • /
    • pp.93-104
    • /
    • 2017
  • This study is a basic study to develop shoe last design technology to enhance and revitalize the competitiveness of the handmade shoes. In-depth interviews were conducted with four manufacturers in Seongsu-dong to identify the production status and design technology of shoe lasts. The result of the research is as follows. Firstly, shoe lasts for adults are produced at intervals of 5mm between 245mm-285mm for men's shoes, and between 220-260mm for women's shoes. The production rate of women's shoes was high in the order of general type, boot type, and sandal type while men's shoes mainly produce general type. Secondly, the master last size and ball girth rating for men's and women's shoes were analyzed to EE-EEE grade at 260mm and D grade at 235mm. The length of the master last for men's shoes is 276-290mm, the heel width is 60-65mm, the ball width is 88-90mm, the ball girth is 250mm, and the waist girth is 248mm. The length of the master shoe last for women's shoes is 236-245 mm, the heel width is 50-55mm, the ball width is 78-80mm, the ball girth is 211~213mm, and the waist girth is 213~215mm. Thirdly, the last grading deviation is 5mm in length, the heel width is 0.5mm, the ball girth is 3.5mm, and the ball with is 1.2mm. The ball girth dimensions of Oxford type, slip-on type, and sneakers type are made at 250mm, 248mm, and 245mm for men's shoes. For women's shoes, the ball girth dimensions of pump type, loafer & boot type, and sandal type are made at 211~213mm, 214~215mm, and 211mm. Fourthly, t+he construction of the automation system is insufficient and almost completely depends on manual production.

  • PDF

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Performance Improvement of IPMC(Ionic Polymer Metal Composites) for a Flapping Actuator

  • Lee, Soon-Gie;Park, Hoon-Cheol;Pandita Surya D.;Yoo Young-Tai
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.748-755
    • /
    • 2006
  • In this paper, a trade-off design and fabrication of IPMC(Ionic Polymer Metal Composites) as an actuator for a flapping device have been described. Experiments for the internal solvent loss of IPMCs have been conducted for various combinations of cation and solvent in order to find out the best combination of cation and solvent for minimal solvent loss and higher actuation force. From the experiments, it was found that IPMCs with heavy water as their solvent could operate longer. Relations between length/thickness and tip force of IPMCs were also quantitatively identified for the actuator design from the tip force measurement of 200, 400, 640, and $800{\mu}m$ thick IPMCs. All IPMCs thicker than $200{\mu}m$ were processed by casting $Nafion^{TM}$ solution. The shorter and thicker IPMCs tended to generate higher actuation force but lower actuation displacement. To improve surface conductivity and to minimize solvent evaporation due to electrically heated electrodes, gold was sputtered on both surfaces of the cast IPMCs by the Physical Vapor Deposition(PVD) process. For amplification of a short IPMC's small actuation displacement to a large flapping motion, a rack-and-pinion type hinge was used in the flapping device. An insect wing was attached to the IPMC flapping mechanism for its flapping test. In this test, the wing flapping device using the $800{\mu}m$ thick IPMC. could create around $10^{\circ}{\sim}85^{\circ}$ flapping angles and $0.5{\sim}15Hz$ flapping frequencies by applying $3{\sim|}4V$.

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Min K. A.;Lee K. H.;Han D. S.;Han G. J.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.311-316
    • /
    • 2004
  • LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation. which has been proposed to take the place qf AGV (Automated Guided Vehicle) in the maritime container terminal. the system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle mr. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research structural optimization for a mover of shuttle mr is performed to minimize the weight satisfying design criteria the objective function is set up as weight. On the contrary, design variable is considered as transverse, longitudinal and wheel beam's thickness and shape variable determining the dimension toward high direction and the constraints are the stresses.

  • PDF

A Human Factors Approach for Aviation Safety (항공안전을 위한 인간공학적 대응)

  • Kim, Dae Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.467-484
    • /
    • 2017
  • Objective: The purpose of this paper is to review, with the main focus on aviation safety technology and management program, how human factors are currently taken into consideration within transportation sectors, especially aviation, and to further share related information. Background: Human factors account for the majority of aviation accidents/incidents. Thus, the aviation sector has been comparatively quick in developing and applying technologies and management programs that deal with human factors. This paper reviews the latest safety technologies and management programs regarding human factors and aims to identify the trend. Method: This paper, based on literature research and practical experience, examines the latest international standards on technologies and management programs, those that deal with human factors and are adopted by international and domestic aviation organization. The main focus of discussion is how human factors are reflected during the system design and operation process. Results: The current most important issue in designing is the consideration of human factors in Cockpit, Automation, and Safety system technology design. From an operational point of view, the issues at hand are screening and training aviation workers to promote aviation safety, providing education on human factors and CRM/TEM, and running a safety management program to implement SMS. They were discussed based on the operational experience within the aviation sector. Conclusion: Major examples of a human factors approach to promote aviation safety are safety programs and various safety and monitoring technologies applied to aviation personnel for error management. These programs must be managed in an integrated manner that takes both the system designing and operational point of view into account. Application: It is thought that the human factors approach for promoting aviation safety reviewed in this paper can be extended and applied to safety management programs in other transportation sectors such as the railroad, maritime, road traffic etc.

Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots (자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링)

  • Kim, Min-Yeong;Jo, Hyeong-Seok;Kim, Jae-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.

Stress Analysis of a Window Cleaning Robot using 3D Modeling and Improvement Plan (3D 모델링을 통한 유리창 청소로봇의 응력해석 및 설계 개선방안 도출)

  • Kim, Kyoon-Tai;Jun, Young-Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • Recently, a prototype of a guide rail type window cleaning robot was developed, and is currently undergoing field testing. The size and the load of the robot have not yet been optimized. In this study, a stress analysis was performed to derive quantitative data to improve the current window cleaning robot and secure its structural safety. Through the analysis of its own weight, resistance to wind speed, and other factors, it was found that the robot can be improved in terms of the drooping caused by its own weight and the drag force against wind pressure. The analysis results obtained will be directly applied to improve the design of the window cleaning robot, and it is expected that this will advance the completeness of the robot's design.

Implementation Planning for Information Technology-Based Future Mail Acceptance System (정보기술 기반의 미래형 우편접수창구 구축계획 수립)

  • Jeong, Keun-Chae
    • Information Systems Review
    • /
    • v.7 no.2
    • /
    • pp.141-162
    • /
    • 2005
  • In this paper, we set up an implementation plan for the Mail Acceptance System (MAS) to be operated more effectively and intelligently. First of all, an as-is analysis for the current MAS is performed for analyzing issues and problems and obtaining user requirements. After the as-is analysis, we perform benchmarking studies on the various postal service providers of the advanced countries. Based on the results from the as-is analysis and benchmarking study, we design a conceptual model for the future MAS. The proposed conceptual model can be classified into three parts: automatic MAS, business MAS, and integrated MAS. Information and automation technologies are applied to design the proposed model for eliminating inefficiencies and inaccuracies in MAS. We identify implementation tasks for realizing the proposed MAS model, evaluate the importance and precedence relationship of the identified tasks for deciding implementation priorities, and finally set up the implementation plan for the future MAS. We can expect that the more efficient and effective MAS can be constructed in the future by performing the proposed implementation plan.

Structural Optimization for LMTT-Mover Using Sequential Kriging Approximation Model (순차적 크리깅 근사모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee Kwon-Hee;Park Hyung-Wook;Han Dong-Seop;Han Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.105-111
    • /
    • 2006
  • A LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method using sequential sampling is utilized to find the optimum design of a mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant functions are set up as the stresses generated by four loading conditions. The optimum results obtained by the suggested method are compared with those determined by the GENESIS.

Performance Simulation of a Turboprop Engine for Basic Trainer

  • Kong, Changduk;Ki, Jayoung;Chung, Sukchoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.839-850
    • /
    • 2002
  • A performance simulation program for the turboprop engine (PT6A-62), which is the power plant of the first Korean indigenous basic trainer KT-1, was developed for performance prediction, development of an EHMS (Engine Health Monitoring System) and the flight simulator. Characteristics of components including compressors, turbines, power turbines and the constant speed propeller were required for the steady state and transient performance analysis with on and off design point analysis. In most cases, these were substituted for what scaled from similar engine components'characteristics with the scaling law. The developed program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters such as mass flow rate, compressor pressure ratio, fuel flow rate, specific fuel consumption and turbine inlet temperature were discussed to evaluate validity of the developed program at various cases. The first case was the sea level static standard condition and other cases were considered with various altitudes, flight velocities and part loads with the range between idle and 105% rotational speed of the gas generator. In the transient analysis, the Continuity of Mass Flow Method was utilized under the condition that mass stored between components is ignored and the flow compatibility is satisfied, and the Modified Euler Method was used for integration of the surplus torque. The transient performance analysis for various fuel schedules was performed. When the fuel step increase was considered, the overshoot of the turbine inlet temperature occurred. However, in case of ramp increase of the fuel longer than step increase of the fuel, the overshoot of the turbine inlet temperature was effectively reduced.