DOI QR코드

DOI QR Code

Structural Optimization for LMTT-Mover Using Sequential Kriging Approximation Model

순차적 크리깅 근사모델을 이용한 LMTT 이동체의 구조최적설계

  • Lee Kwon-Hee (Division of Mechanical Engineering Dong-A University) ;
  • Park Hyung-Wook (Division of Mechanical Engineering Dong-A University) ;
  • Han Dong-Seop (Division of Mechanical Engineering Dong-A University) ;
  • Han Geun-Jo (Division of Mechanical Engineering Dong-A University)
  • Published : 2006.02.01

Abstract

A LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method using sequential sampling is utilized to find the optimum design of a mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant functions are set up as the stresses generated by four loading conditions. The optimum results obtained by the suggested method are compared with those determined by the GENESIS.

LMTT는 항만 자동화를 위한 수평 이송이 가능하도록 설계된 셔틀카와 격자구조의 레일에 부착된 스테이터 모듈(stator module)로 구성된 PMLSM(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 연구에서는 순차적 표본방법에 기초하여 구성된 크리깅 근사모델을 이용하여 이동체의 구조최적설계를 수행하였다. 본 논문에서는 셀 요소로 유한요소 모델링된 이동체(mover)의 경량화 설계를 위하여 강도기준을 고려하고, 설계변수로는 가로빔, 세로빔, 휠 빔의 두께로 설정하였다. 순차적 크리깅모델에 의하여 구해진 최적해를 상용프로그램인 GENESIS를 이용하여 구해진 최적해와 비교, 검토하였다.

Keywords

References

  1. Guinta, A. and Watson, L.(1998), 'A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models,' Proc. of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Mo, AIAA, Vol. 2., (AIAA-98-4758)
  2. Jin, R., Chen, W. and Sudjianto, A.(2002), 'On Sequential Sampling for Global Metamodeling in Engineering Design,' Proc. DETC'02 ASME 2002 Design Engineering Technical Conferences and Computer and Irforrration in Engineering Conferences, (DETC2002/DAC-32092)
  3. Jin, R., Du, X. and Chen, W.(2003), 'The Use of Metamodeling Techniques for Optimization under Uncertainty,' Structural Multidisciplinary Optimization, Vol. 25, No. 2, pp. 99-116 https://doi.org/10.1007/s00158-002-0277-0
  4. Leary, S. J., Bhaskar, A. and Keane, A. J.(2004), 'A Derivative Based Surrogate Model for Approximating and Optimizing the Output of an Expensive Computer Simulations,' Journal of Global Optimization, Vol. 30, pp.39-58 https://doi.org/10.1023/B:JOGO.0000049094.73665.7e
  5. Lee, K. H.(2005), 'Optimization of a Driver-Side Aribag Using Kriging Based Approximation Model,' Journal of Mechanical Science and Technology, Vol. 19, No. 1, pp. 116-126 https://doi.org/10.1007/BF02916110
  6. Lee, K. H. and Park, G. J.(2005), 'A Global Robust Optimization Using the Kriging Based Approximation Model,' Transactions of the KSME A(in Korean), Vol. 29, No. 9, pp. 1243-1252 https://doi.org/10.3795/KSME-A.2005.29.9.1243
  7. Lee, T. H., jung, J. J., Hwang, I. K. and Lee, C. S., (2004a), 'Sensitivity Approach of Sequential Sampling for Kriging Model,' Transactions of the KSME A(in Korean), Vol. 28, No. 1, pp. 1760-1767 https://doi.org/10.3795/KSME-A.2004.28.11.1760
  8. Lee, K. H., Min, K. A., Park, H. W., Han, D. S. and Han, G. J.(2004b), 'Structural Optimization for LMTT-mover of a Crane', Journal of Korean Navigation and Port Research(in Korean), Vol. 28, No. 2, pp.311-316
  9. Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989), 'Design and Analysis of Computer Experiments,. Statical Science, Vol. 4, No. 4, pp.409-435 https://doi.org/10.1214/ss/1177012413
  10. Santner, T. J., Williams, B. J. and Notz, W. I.(2003), 'The Design and Analysis of Computer Experiments, Springer, New York
  11. VMA Engineering (1998), GENESIS User's Manual 5.0