• Title/Summary/Keyword: Desalination

Search Result 482, Processing Time 0.035 seconds

Pretreatment in Reverse Osmosis Seawater Desalination: A Short Review

  • Valavala, Ramesh;Sohn, Jin-Sik;Han, Ji-Hee;Her, Nam-Guk;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.205-212
    • /
    • 2011
  • Reverse osmosis (RO) technology has developed over the past 40 years to control a 44% market share in the world desalting production capacity and an 80% share in the total number of desalination plants installed worldwide. The application of conventional and low-pressure membrane pretreatment processes to seawater RO (SWRO) desalination has undergone accelerated development over the past decade. Reliable pretreatment techniques are required for the successful operation of SWRO processes, since a major issue is membrane fouling associated with particulate matter/colloids, organic/inorganic compounds, and biological growth. While conventional pretreatment processes such as coagulation and granular media filtration have been widely used for SWRO, there has been an increased tendency toward the use of ultrafiltration/microfiltration (UF/MF) instead of conventional treatment techniques. The literature shows that both the conventional and the UF/MF membrane pretreatment processes have different advantages and disadvantages. This review suggests that, depending on the feed water quality conditions, the suitable integration of multiple pretreatment processes may be considered valid since this would utilize the benefits of each separate pretreatment.

Operating performance of desalination system with solar energy (태양에너지 해수담수화 시스템 운전 성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.250-255
    • /
    • 2009
  • This study was analyzed the long term performance of the demonstration system for solar energy desalination in Jeju. we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$ a $120m^2$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. Through the operation during about 3 years, In a clear day more than $400W/m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to March, 2009 for 3 years, solar irradiance daily averaged was measured $370W/m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

Evaluation of long-term performance for single-stage desalination system with solar energy (태양에너지 해수담수화 실증시스템 장기 운전 열성능)

  • Kwak, Hee-Youl;Yoon, Eung-Sang;Joo, Moon-Chang;Joo, Hong-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.172-177
    • /
    • 2008
  • This study was carry out evaluation of long-term performance for the decentralized desalination system with the solar thermal system and the photovoltaic power system. First operating demonstration system was set up in Cheju in 2006. These system comprises the desalination unit with designed daily fresh water capacity of $2m^3$ and is supplied by a $120m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank, and a 5kW photovoltaic power generation supply the electricity for hydraulic pumps to move the working fluids. In a clear day more than 400W/$m^2$, the daily fresh water showed to produce more than about 500liter, and from January, 2007 to October, 2008 for 2 years, solar irradiance daily averaged was measured 370W/$m^2$, the daily fresh water yield showed that can be produced about 330liter.

  • PDF

Numerical study on the flow characteristics of horizontal tube bundle (Tube-bundle형 열교환기의 액막 유동에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Choi, Du-Youl;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Kim, Kyeong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1256-1261
    • /
    • 2009
  • Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.

  • PDF

Patents Review on the Seawater Desalination Plant and Technology Using Reverse Osmosis Membrane Process (SWRO 해수담수화 플랜트 기술 관련 특허 동향 분석)

  • Cho, Jin Woo;Han, Ji Hee;Lee, Seock Heon;Sohn, Jin Sik;Yang, Jeong Seok;Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.343-350
    • /
    • 2008
  • Many reports have warned of insufficient water supply in most countries in future and prospected providing safe and clean water become more difficult by lack of access to sustainable drinking water resources. Several facts and figures explained the impact by natural climate change and human activity results in the water scarcity and deterioration. Among many scientific solutions, the seawater desalination using a reverse osmosis membrane, so called SWRO (Seawater Reverse Osmosis) process, has been recognized as one of the most promising alternatives because of its stability and efficiency in producing large amount of drinking water from seawater through desalination by membrane filtration. Recently, in Korea, numerous researches are conducted to develop more productive and cost effective SWRO process for its wide implementation. The objective of this paper is to review the patents concerning SWRO technologies involving the plant engineering, maintenance including pretreatment of seawater and fouling control, module design, and mechanical units development for energy saving. The patents in Korea, U.S., Japan, Europe, and PCT were intensively researched and analyzed to provide the state of the art as well as leading edge technology on SWRO. This information can hopefully suggest meaningful guidelines on future research and development.

High performance pervaporative desalination of saline waters using Na-X zeolite membrane

  • Malekpour, Akbar;Nasiri, Hamed
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 2017
  • A high quality Na-X zeolite membrane was synthesized on a seeded ${\alpha}-alumina$ disc by the secondary growth method. Structural characterization was done by X-ray spectroscopy, FT-IR spectroscopy, SEM and AFM imaging. The performance evaluation of the membrane was firstly tested in separation of glucose/water solutions by pervaporation process. There was obtained a separation factor $182.7{\pm}8.8$, while the flux through the membrane was $3.6{\pm}0.3kg\;m^{-2}\;h^{-1}$. The zeolite membrane was then used for desalination of aqueous solutions consisting of $Na^+$, $Ca^{2+}$, $Cs^+$ and $Sr^{2+}$ because of the importance of these ions in water and wastewater treatments. The effects of some parameters such as temperature and solution concentration on the desalination process were studied for investigating of diffusion/adsorption mechanism in membrane separation. Finally, high water fluxes ranged from 2 up to $9kg\;m^{-2}\;h^{-1}$ were obtained and the rejection factors were resulted more than 95% for $Na^+$ and $Ca^{2+}$ and near to 99% for $Cs^+$ and $Sr^{2+}$. Based on the results, fluxes were significantly improved due to convenient passage of water molecules from large pores of NaX, while the fouling was declining dramatically. Based on the results, NaX zeolite can efficiently use for the removal of different cations from wastewaters.

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.

Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System (태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구)

  • Kim, Jeong-Bae;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System (태양열 해수담수화 시스템을 위한 다중효용 담수기 개발)

  • Joo, Hong-Jin;Hwang, In-Seon;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3$/day capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3$/hour sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8\;m^3$/hour for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3$/day of fresh water. Based on the results of this study, It makes possible to secure economics of desalination system with solar energy which is basically needed development of high efficiency fresh water generator.

A Performance Study on Silica Gel Adsorption Desalination System Utilizing Low Temperature Heat Sources (저온 활용을 위한 실리카겔 흡착식 담수화시스템의 성능연구)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • This work introduces a simple one-reactor adsorption desalination system that harnesses low temperature heat sources (solar energy, waste heat), which has been experimentally studied to elicit the most suitable design parameters and operating conditions. The design process of the system was divided into three parts to reflect the operating principle of desalination technology with application of adsorption processes. First, the evaporator for the vaporization of saline water was designed, then the reactor for the adsorption and release of the steam, followed by the condenser for condensation of the fresh water. The specific water yield is measured experimentally with respect to the time while controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. The present system well demonstrates the applicability of silica gel in relation to adsorption technologies that utilize low temperature heat sources ranging from 60 to $80^{\circ}C$, such as solar energy and waste heat.