• Title/Summary/Keyword: Derjaguin approximation

Search Result 3, Processing Time 0.017 seconds

Electrical Repulsive Energy between Two Cylindrical Particles with Finite Length: Configuration Dependence

  • Choi, Ju-Young;Dong, Hyun-Bae;Haam, Seung-Joo;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1131-1136
    • /
    • 2008
  • The electrical repulsive energy between two model cylinders was calculated by solving nonlinear Poission- Boltzmann (P-B) equation under Derjaguin approximation. Effects of the surface potential, Debye screening length, and configuration of cylinders on the repulsive interaction energy were examined. Due to the anisotropy of the shape of cylinder, the interaction repulsive energy showed dependence to the configuration of particles; cylinders aligned in end-to-end configuration showed largest repulsive energy and crossed particles had lowest interaction energy. The configuration effect is originated from the curvature effect of the interacting surfaces. The curved surfaces showed less repulsive energy than flat surfaces at the same interacting surface area. The configuration dependency of interaction energy agreed with the previous analytical solution obtained under the linearized P-B equation. The approach and results present in this report would be applicable in predicting colloidal behavior of cylindrical particles.

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

Condensation of Nano-Size Polymer Aggregates by Spin Drying

  • Ishikawa, Atsushi;Kawai, Akira
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.7-10
    • /
    • 2005
  • Condensation control of nano-particles has become important in order to fabricate minute condensed structures. In this study, we focus our attention on condensation mechanism of polymer aggregates in a resist film. The polymer aggregate is structural component of a resist material which is used in lithography process. The condensation nature of polymer aggregates in the resist film surface is observed by using atomic force microscope (AFM). By using the AFM, the condensation of polymer aggregates can be observed clearly. The condensation of polymer aggregate strongly affects to precise fabrication of resist pattern below 100nm size. The interaction force among polymer aggregates can be analyzed based on Derjaguin approximation. We also discuss about condensation nature of polymer aggregates in the resist film surface with the help of micro sphere model.

  • PDF