• Title/Summary/Keyword: Derivative function

Search Result 553, Processing Time 0.022 seconds

BOUNDS OF HANKEL DETERMINANTS FOR ANALYTIC FUNCTION

  • Ornek, Bulent Nafi
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.699-715
    • /
    • 2020
  • In this paper, we give estimates of the Hankel determinant H2(1) in a novel class 𝓝 (𝜀) of analytical functions in the unit disc. In addition, the relation between the Fekete-Szegö function H2(1) and the module of the angular derivative of the analytical function p(z) at a boundary point b of the unit disk will be given. In this association, the coefficients in the Hankel determinant b2, b3 and b4 will be taken into consideration. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

New Calibration Methods for improving the Accuracy of AFM (원자간력 현미경의 자율교정법)

  • Kweon, Hyun-Kyu;Go, Young-Chae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.48-52
    • /
    • 2001
  • In this paper presents an accurate AFM used that is free from the Z-directional distortion of a servo actuator is described. Two mathematical correction methods by the in-situ self-calibrationare employed in this AFM. One is the method by the integration, and the other is the method by inverse function of the calibration curve. The in situ self-calibration method by the integration, the derivative of the calibration curve function of the PZT actuator is calculated from the profile measurement data sets which are obtained by repeating measurements after a small Z-directional shift. Input displacement at each sampling point is approximately estimated first by using a straight calibration line. The derivative is integrated with reference to the approximate input to obtain the approximate calibration curve. Then the approximation of the input value of each sampling point is improved using the obtained calibration curve. Next the integral of the derivative is improved using the newly estimated input values. As a result of repeating these improving process, the calibration curve converges to the correct one, and the distortion of the AFM image can be corrected. In the in situ self-calibration through evaluating the inverse function of the calibration curve, the profile measurement data sets were used during the data processing technique. Principles and experimental results of the two methods are presented.

  • PDF

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Fast Optimization by Queen-bee Evolution and Derivative Evaluation in Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.310-315
    • /
    • 2005
  • This paper proposes a fast optimization method by combining queen-bee evolution and derivative evaluation in genetic algorithms. These two operations make it possible for genetic algorithms to focus on highly fitted individuals and rapidly evolved individuals, respectively. Even though the two operations can also increase the probability that genetic algorithms fall into premature convergence phenomenon, that can be controlled by strong mutation rates. That is, the two operations and the strong mutation strengthen exploitation and exploration of the genetic algorithms, respectively. As a result, the genetic algorithm employing queen-bee evolution and derivative evaluation finds optimum solutions more quickly than those employing one of them. This was proved by experiments with one pattern matching problem and two function optimization problems.

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

SUFFICIENT CONDITIONS FOR OPTIMALITY IN DIFFERENTIAL INCLUSION UNDER STATE CONSTRAINTS

  • Kim, Kyung-Eung
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.557-567
    • /
    • 2004
  • We prove the sufficient conditions for optimality in differential inclusion problem by using the value function. For this purpose, we assume at first that the value function is locally Lipschitz. Secondly, without this assumption, we use the viability theory.

A STUDY OF SIMULTANEOUS APPROXIMATION BY NEURAL NETWORKS

  • Hahm, N.;Hong, B.I.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.317-324
    • /
    • 2008
  • This paper shows the degree of simultaneous neural network approximation for a target function in $C^r$[-1, 1] and its first derivative. We use the Jackson's theorem for differentiable functions to get a degree of approximation to a target function by algebraic polynomials and trigonometric polynomials. We also make use of the de La Vall$\grave{e}$e Poussin sum to get an approximation order by algebraic polynomials to the derivative of a target function. By showing that the divided difference with a generalized translation network can be arbitrarily closed to algebraic polynomials on [-1, 1], we obtain the degree of simultaneous approximation.

  • PDF

ESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES AT THE BOUNDARY

  • Gok, Burcu;Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.689-707
    • /
    • 2017
  • In this paper, a boundary version of Schwarz lemma is investigated. We take into consideration a function f(z) holomorphic in the unit disc and f(0) = 0, f'(0) = 1 such that ${\Re}f^{\prime}(z)$ > ${\frac{1-{\alpha}}{2}}$, -1 < ${\alpha}$ < 1, we estimate a modulus of the second non-tangential derivative of f(z) function at the boundary point $z_0$ with ${\Re}f^{\prime}(z_0)={\frac{1-{\alpha}}{2}}$, by taking into account their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below ${\mid}f^{{\prime}{\prime}}(z_0){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these inequalities is also proved.