• 제목/요약/키워드: Derivation Efficiency

검색결과 87건 처리시간 0.024초

계층분석법을 이용한 강의평가 요인도출과 우선순위분석 (Factor Derivation of Course Evaluation and Priority Analysis Using Analytic Hierarchy Process)

  • 안수현;이상준
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.513-522
    • /
    • 2022
  • 강의평가는 대학교육의 질을 향상시키고 수업을 개선하는데 유용한 정보로 활용된다. 본 연구는 강의평가를 구성하는 요인을 탐색하고자 선행연구와 FGI를 통해 구성요인을 도출하고 계층분석법(AHP: Analytic Hierarchy Process)을 통해 요인간 상대적 중요도 및 우선순위를 파악하였다. 이를 위해 5개의 구성요인과 15개의 평가항목을 도출하였다. 강의평가 요인개발의 전문성과 공정성을 확보하기 위해 학생과 교원을 대상으로 설문을 실시하여 총 20부의 유효한 자료를 수집하였고, 일치도 검증을 완료한 자료를 토대로 각 평가항목의 가중치를 산출하였다. 분석 결과 강의평가 요인구성에 있어서 학생은 수업 내용, 수업 방법, 수업 운영, 수업 평가, 수업 계획 순으로, 교원은 수업 내용, 수업 운영, 수업 방법, 수업 평가, 수업 계획 순으로 중요하다고 평가하였다. 본 연구 결과를 바탕으로 대학교육의 질 관리 차원에서 강의평가의 효율성과 신뢰성 향상을 위해 다양한 분석과 연구가 있기를 기대한다.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.

물리적 아키텍처 설계에 대한 DSM 방법론 적용 사례 연구 (On the design method of physical architecture based on the Design Structure Matrix (DSM) approach)

  • 최상욱;최상택;정윤호;장재덕
    • 시스템엔지니어링학술지
    • /
    • 제8권1호
    • /
    • pp.21-28
    • /
    • 2012
  • Development of the system that has required performance is the most important figure and that is the key of project succeed. In order to perform that, systems engineering has come to the fore as a solution. In each step of system engineering process, particularly, requirement analysis and derivation, logical solution, architecture design step are known to affect many of the function and efficiency. Of these, this paper focus on architecture design. We introduce methodology for physical architecture design by applying DSM(Design Structure Matrix) methodology which is based on result of logical solution from MBSE methodology.

벤처기업의 지식경영 성공요인 도출에 관한 연구: 코스닥 상장기업을 대상으로 (A Study on the Key Success Factors for Knowledge Management of the Venture Businesses Listed in KOSDAQ)

  • 권순재;이건창;최봉
    • 지식경영연구
    • /
    • 제7권1호
    • /
    • pp.65-80
    • /
    • 2006
  • Recently, Korean economy is boosted by the active introduction of many venture businesses full of entrepreneurship. It has been widely accepted implicitly that success of the venture business originates from unique style of knowledge management. This assumption looks natural when we consider the fact that success of the venture business heavily depends on differentiated intelligent asset or knowledge. However, such implicit belief has never been tested empirically. To fill the research void like this, this paper proposes an empirical derivation of key success factors from the venture businesses listed in KOSDAQ. To add rigor to our results, we performed regression analysis by using the derived key success factors as independent variables, and introducing organization efficiency, job satisfaction, and accomplishment motivation as dependent variables. Regression results showed that our approach is justified from the statistical perspective.

  • PDF

Secret Key Generation from Common Randomness over Ultra-wideband Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3557-3571
    • /
    • 2014
  • We develop a secret key generation scheme using phase estimation in ultra-wideband (UWB) wireless fading channels. Based on the reciprocity theorem, two terminals extract the phase of the channel as a common random source to generate secret bits. Moreover, we study the secret key rate by a pair of nodes observing correlated sources and communicating to achieve secret key agreement over public communication channels. As our main results, we establish a more practical upper bound from Cramer-Rao bound (CRB) and compare it with a universally theoretical upper bound on the shared maximum key rate from mutual information of correlated random sources. Derivation and numerical examples are presented to demonstrate the bound. Simulation studies are also provided to validate feasibility and efficiency of the proposed scheme.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

마이크로스트립 구조에 관한 새로운 closed-form 그린함수 유도를 위한 견실한 방법과 빠른 모멘트법으로의 응용 (A robust method for derivation of the new closed-form Green관s functions for microstrip structures and its application to a fast MoM)

  • Kim, Eui-Joong
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2002년도 종합학술발표회 논문집 Vol.12 No.1
    • /
    • pp.423-433
    • /
    • 2002
  • A very fast method of moments(MoM) for the analysis of microstrip structure is considered based upon the use of rooftop basis and razor test functions in conjunction with a new closed-form Green's functions. The present method presents a robust approach to obtain the Green's functions which can be derived by use of only one set of approximation parameters independently of operating frequency range. Moreover, using the present MoM scheme, the MoM matrix elements can be analytically evaluated with few number of terms in comparison with the previous method. So, the computational efficiency can be improved significantly without loss of the precision. In order to check the validity of the present method, performance is demonstrated for the example of a coaxially-fed microstrip transmission line and the present results are compared with the previous results.

  • PDF

순환 다물체동역학에서의 비순환적인 동하중해석 공식 (A Non-recursive Formulation of Dynamic Force Analysis in Recursive Multibody Dynamics)

  • 김성수
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.809-818
    • /
    • 1997
  • An efficient non-recursive formulation of dynamic force analysis has been developed for serially connected multibody systems. Although derivation of equations of motion is based on a recursive dynamic formulation with joint relative coordinates, in the proposed formulation, dynamic forces such as joint reaction forces and driving force are computed non-recursively for specified joints. The efficiency of the proposed formulation has been proved by the operational count and the CPU time measure, comparing with that of the conventional recursive Newton-Euler formulation. A simulation of 7-DOF RRC robot arm has been carried out to validate solutions of reaction forces by comparing with those from a commercial dynamic analysis program DADS.

6×6 자율주행 차량의 실시간 해석을 위한 연구 (A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle)

  • 조두호;이정한;이기창;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF