• Title/Summary/Keyword: Depth ratio

Search Result 2,613, Processing Time 0.026 seconds

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

The Effects of Resin Ratio and Bed Depth on the Performance of Mixed-bed Ion Exchange at Ultralow Solution

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Noh, Byeong-Il
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.595-601
    • /
    • 2009
  • The effects of the cation-to-anion resin ratio and bed depth on ion exchange performance of mixed-bed were studied at ultralow solution concentration. Breakthrough curves were experimentally obtained for NaCI solution as functions of resin ratio and bed depth. The bed depth affects the pattern of the sodium breakthrough curve but not the chloride breakthrough curve in beds because of the selectivity difference. Resin selectivity determines the shape of breakthrough curves, Some sodium and chloride breakthrough curves crossed at a point as a function of resin ratio. The lower cation-to-anion resin ratio showed the higher effluent concentration or treated volume of the crossover point regardless of the total resin weight.

An Experimental Study to Predict Minimum Shear Reinforcement Ratio of RC Beams with Various Shear Span-to-Depth Ratios (전단경간비가 다른 철근콘크리트 보의 최소전단철근비 예측에 관한 실험적 연구)

  • 김욱연;김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.890-895
    • /
    • 2003
  • The purpose of this experimental study is to investigate the influence of shear span-to-depth ratio on the minimum shear reinforcement ratio of reinforced concrete beams. In this study, 7 reinforced concrete beam specimens were tested. The parameters of experiment are shear span-to-depth ratio(a/d=2.0, 3.0, 4.0) and shear reinforcement ratio($p_v$=0%, 0.183%, and 0.233%). The section of all secimens was 350mm width and 450mm depth. The observed results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation. The safety rate of the specimens, L5S2A, L5S3A, L5S4A, and L5S4P specimens were 1.80, 1.25, 1.38, and 1.56 respectively. The test results indicated that the shear behavior of reinforced concrete beams with the minimum shear reinforcement was influenced by the shear span-to-depth ratio.

  • PDF

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Characteristics of Excessive Horizontal Stress in Korea by Hydraulic Fracturing Stress Measurement (수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Hak-Soo;Kim, Jae-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.431-438
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using the in-situ hydraulic fracturing stress measurement data over five hundred in 110 individual test boreholes. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the subsurface space above 310 m depth in the entire territory, the stress ratio has a tendency to diminish and be stabilized with depth, but for some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The result of investigation for excessive horizontal stress regions indicates that there exist several regions above 300 m in depth where localized excessive horizontal stresses enough to induce potentially brittle failure around future openings have formed.

  • PDF

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

An Analysis for the Characteristics of Headward Erosion and Separation Zone due to Bed Discordance at Confluence (합류부 하상고 불일치에 의한 두부침식 및 분리구역 특성분석)

  • Choi, Heung Sik;Mo, Sun Jea;Lee, Sam Hee
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.879-889
    • /
    • 2015
  • The pattern of headward erosion at tributary and the separation zone formation in a loosed bed at confluence according to the confluence angle, discharge ratio, and dredging depth ratio have been analyzed. The separation zone is defined the inside of zero velocity boundary at downstream of confluence. The limit of separation zone occurrence is presented with dredging depth ratio. The propagation length of knickpoint increases as the confluence angle, discharge ratio, and dredging depth ratio increase in general and its regression equation has been suggested. The length and width ratios of separation zone in a loosed bed increase as discharge ratio and confluence angle increase as well as in a fixed bed. The length ratio decreases and the width ratio increases as dredging depth ratio increases results in great increase of shape factor and backwater rise by the conveyance reduction at confluence. The regression equation of shape factor with confluence angle, discharge ratio, and dredging depth ratio has been suggested.