• Title/Summary/Keyword: Depth error correction effect

Search Result 9, Processing Time 0.032 seconds

Depth error correction for maladjusted stereo cameras with the calibrated pixel distance parameter (화소간격 파라미터 교정에 의한 비정렬 스테레오 카메라의 거리오차 보정)

  • 김종만;손홍락;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.268-272
    • /
    • 1996
  • Error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with some experimental results.

  • PDF

Distance measurement system compensated parameters for extraction of 3D distance (원거리 물체의 3차원거리 측정시의 파라미터 보정된 거리측정시스템)

  • Kim, Jeong-Man;Kim, Young-Min;Kim, Won-Sup;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.605-606
    • /
    • 2005
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with various experimental results.

  • PDF

Depth error calibration of maladjusted stereo cameras for translation of instrumented image information in dynamic objects (동영상 정보의 계측정보 전송을 위한 비선형 스테레오 카메라의 오차 보정)

  • Kim, Jong-Man;Kim, Yeong-Min;Hwang, Jong-Sun;Lim, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.109-114
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with various experimental results.

  • PDF

Correction in the Measurement Error of Water Depth Caused by the Effect of Seafloor Slope on Peak Timing of Airborne LiDAR Waveforms (지형 기울기에 의한 항공 수심 라이다 수심 측정 오차 보정)

  • Sim, Ki Hyeon;Woo, Jae Heun;Lee, Jae Yong;Kim, Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • Light detection and ranging (LiDAR) is one of the most efficient technologies to obtain the topographic and bathymetric map of coastal zones, superior to other technologies, such as sound navigation and ranging (SONAR) and synthetic aperture radar (SAR). However, the measurement results using LiDAR are vulnerable to environmental factors. To achieve a correspondence between the acquired LiDAR data and reality, error sources must be considered, such as the water surface slope, water turbidity, and seafloor slope. Based on the knowledge of those factors' effects, error corrections can be applied. We concentrated on the effect of the seafloor slope on LiDAR waveforms while restricting other error sources. A simulation regarding in-water beam scattering was conducted, followed by an investigation of the correlation between the seafloor slope and peak timing of return waveforms. As a result, an equation was derived to correct the depth error caused by the seafloor slope.

Ablation Depth of Cornea and Munnerlyn Formula in Refractive Keratectomy (각막굴절교정절제술에서 각막의 절제 깊이와 Munnerlyn 식)

  • Choi, Woon Sang;Kim, Yoon-Kyung;Lee, Sung Ah
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.121-124
    • /
    • 2007
  • Ablation depth of cornea in refractive keratectomy was calculated by Munnerlyn formula. The calculations were preformed for various optical diameter (4 mm~8 mm) and various amount of corrections (-1 Dptr ~ -12 Dptr). The results to be compared with the Munnerlyn approximated formula had little effect within lower corrections, but in higher corrections > 6 Dptr can be occurred the error of 1 Dptr. Although ablation depth were evaluated, the results were only calculated by mathematical model of geometric assumptions. Because ablation depth can vary with operation conditions, the correction factor should be considered not only ablation depth by Munnerlyn formula but also surgeon-specific factor.

  • PDF

A Sensitivity Test on the Minimum Depth of the Tide Model in the Northeast Asian Marginal Seas (동북아시아 조석 모델의 최소수심에 대한 민감도 분석)

  • Lee, Ho-Jin;Seo, Ok-Hee;Kang, Hyoun-Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-466
    • /
    • 2007
  • The effect of depth correction in the coastal sea has been investigated through a series of tide simulations in the area of $115{\sim}150^{\circ}E,\;20{\sim}52^{\circ}N$ of northwestern Pacific with $1/12^{\circ}$ resolution. Comparison of the solutions varying the minimum depth from 10m to 35 m with the 5m interval shows that the amplitude accuracies of $M_2,\;S_2,\;K_1$ tide using the minimum depth of 25 m have been improved up to 42%, 32%, 26%, respectively, comparing to those using the minimum depth of 10m. The discrepancy between model results using different minimum depth is found to be up to 20 cm for $M_2$ tidal amplitude around Cheju Islands and the positions of amphidromes are dramatically changed in the Bohai Sea. The calculated ARE(Averaged Relative Error) values have been minimized when the bottom frictional coefficient and the minimum depth is 0.0015 and 25 m, respectively.

A Propagation Programming Neural Network for Real-time matching of Stereo Images (스테레오 영상의 실시간 정합을 위한 보간 신경망 설계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.194-199
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The proposed neural network technique is the real time computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objects during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of objects. All of them request much memory space and time. Therefore the most reliable neural-network algorithm is derived for real-time matching of objects, which is composed of a dynamic programming algorithm based on sequence matching techniques.

  • PDF

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A (KOMPSAT-3/3A 채널별 6SV 조견표의 지표반사도 민감도 분석)

  • Jung, Daeseong;Jin, Donghyun;Seong, Noh-Hun;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sim, Suyoung;Han, Kyung-Soo;Kim, Bo-Ram
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.785-791
    • /
    • 2020
  • The radiance measured from satellite has noise due to atmospheric effect. Atmospheric correction is the process of calculating surface reflectance by removing atmospheric effect and surface reflectance is calculated by the Radiative Transfer Model (RTM)-based Look-Up Table (LUT). In general, studies using a LUT make LUT for each channel with the same atmospheric and geometric conditions. However, atmospheric effect of atmospheric factors do not react sensitively in the same channel. In this study, the LUT for each channel of Korea Multi-Purpose SATellite (KOMPSAT)-3/3A was made under the same atmospheric·geometric conditions. And, the accuracy of the LUT was verified by using the simulated Top of Atmosphere radiation and surface reflectance in the RTM. As a result, the relative error of the surface reflectance in the blue channel that sensitive to the aerosol optical depth was 81.14% at the maximum, and 42.67% in the NIR (Near Infrared) channel.