• Title/Summary/Keyword: Depth dose

Search Result 510, Processing Time 0.029 seconds

Dose Assessment According to Application of Carbon Fabric Blanket During Radiation Therapy of the Spine Metastasis Cancer (척추 전이암 환자의 방사선치료 시 Carbon Fabric Blanket 적용에 따른 선량평가)

  • Yang, Myung-Sic;Kim, Jung-Soo;Lee, Sun-Young;Kwon, Hyoung-Cheol
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2019
  • The purpose of this study was to improve the unstable treatment posture by placing the Carbon fabric blanket on the couch which was used for the patient fixation for the unstable posture from the severe pain caused by the neuromuscular pressure of the spinal metastatic cancer patient and to analyze the dose difference caused by the energy loss of high energy radiation. Using a linear accelerator, a FC-65G was installed at a depth of 5 cm at a solid phantom at 6 MV and 10 MV energies. The SAD was 100 cm, Gantry angle was $0^{\circ}$, a Cotton and Carbon blanket with a thickness of 1 cm on the couch, The blankets were placed on the couch and the dose was measured according to field size. For the dose measurement, and the dose was measured at 100 MU each time, and the mean value was calculated by repeating the measurement three times in order to reduce the error. The results showed that the difference rate in dose between Carbon blanket and Cotton blanket was respectively -0.54% and -0.75% based on the absence of the blanket(Non). Therefore, it is considered that the use of Carbon fabric blanket, which reduces the patient's pain and does not affect the depth dose, may be useful during radiation therapy of the spine metastasis cancer.

A Study on Photon Dose Calculation in 6 MV Linear Accelerator Based on Monte Carlo Method (몬테카를로 방법에 의한 6 MV 선형가속기의 광자 흡수선량 분포 평가에 관한 연구)

  • Kang, Sang-Koo;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • In this study we modeled the varian 2100C/D linear accelerator head and multi-leaf collimator by simulation with the GEANT4 Monte Carlo toolkit. Then central axis percentage depth dose profiles and lateral dose profiles within homogeneous water phantom($50{\times}50{\times}50\;cm^3$) were evaluated with 6 MV photon beam. The simulations were performed in two stages. In the first stage, photon energy spectrum at the target were computed were computed. Then spectra data was directly irradiated in the water phantom using sampling techniques. The simulation data were compared with experimental data to evaluate the accuracy of the model. Results showed that two data were matched within 2% error boundary. The proposed method will be applied for simulation of dose calculation and dose distribution study.

A study on dose attenuation in bone density when TBI using diode detector and TLD (전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰)

  • IM Hyun Sil;Lee Jung Jin;Jang Ahn Ki;Kim Wan Seon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.67-77
    • /
    • 2003
  • I. Purpose Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. II. Materials and Methods The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. III. Results Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ respectably. Measured mid-depth dose of pelvis, knees and ankles were $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$ respectably. There were $6.67\%{\sim}11.65\%$ dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$ respectably. There were $4.53\%{\sim}12.6\%$ dose attenuation at mid-depth in pelvis, knees and ankles. IV. Conclusion We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  • PDF

A Study on the Dose Distribution of Various Field and Penumbra Shield in the Telecobalt-60 (코발트-60의 조사야(照射野) 변형(變形) 및 반음영(半陰影) 차폐(遮蔽)효과에 따른 선량분포(線量分布)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Hye-Kyong
    • Journal of radiological science and technology
    • /
    • v.8 no.2
    • /
    • pp.71-72
    • /
    • 1985
  • This study was performed on the dose distribution of various field size and the effect of penumbra shield in the telecobalt unit. The results obtained are as follows. 1. Errors of the light and ${\gamma}-ray$ field size was below the regulation as 0.52 percentage. 2. The coefficient of field area was increased with the larger field area, and this coefficient was showed the more difference in larger SSD. 3. The rectangular field areas, which were described by level of the same percentage depth does, were decreased with the more elongation factor. At the same elongation factor, the compensating factor was decreased with the larger field size. 4. The lead block or extension collimator was able to shield r-ray exposure of outside field size from 50 to 80 percentage. 5. On the matching adjacent fields, while the gap between beam edges are contacted, that overlapped beam edges indicated up to 140 percentage, and while the gap was 1 cm, it could be reduced to 90 Percentage. The lead-libocking on the overlapped area was more effective to lower dose, as 80 percentage in this case. 6. Percentage depth dose of various trimming field sizes were increased linearlly according to area 1 perimeter size, but the center split field size did not maintain linearlly.

  • PDF

Influence of Dose on the Property of Cobalt Silicides in Source/Drain Area (소오스/드레인 영역의 도펀트 양의 증가에 따른 코발트실리사이드의 물성변화)

  • Cheong, Seong-Hwee;Song, Oh-Sung;Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2003
  • As and BF$_2$dopants are implanted for the formation of source/drain with dose of 1${\times}$10$^{15}$ ions/$\textrm{cm}^2$∼5${\times}$10$^{15}$ ions/$\textrm{cm}^2$ then formed cobalt disilicide with Co/Ti deposition and doubly rapid thermal annealing. Appropriate ion implantation and cobalt salicide process are employed to meet the sub-0.13 $\mu\textrm{m}$ CMOS devices. We investigated the process results of sheet resistance, dopant redistribution, and surface-interface microstructure with a four-point probe, a secondary ion mass spectroscope(SIMS), a scanning probe microscope (SPM), and a cross sectional transmission electron microscope(TEM), respectively. Sheet resistance increased to 8%∼12% as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{V}$ , while sheet resistance uniformity showed very little variation. SIMS depth profiling revealed that the diffusion of As and B was enhanced as dose increased in $CoSi_2$$n^{+}$ and $CoSi_2$$p^{+}$ . The surface roughness of root mean square(RMS) values measured by a SPM decreased as dose increased in $CoSi_2$$n^{+}$ , while little variation was observed in $CoSi_2$$p^{+}$ . Cross sectional TEM images showed that the spikes of 30 nm∼50 nm-depth were formed at the interfaces of $CoSi_2$$n^{+}$ / and $CoSi_2$/$p^{+}$, which indicate the possible leakage current source. Our result implied that Co/Ti cobalt salicide was compatible with high dose sub-0.13$\mu\textrm{m}$ process.

The Theoretical Study of Absorbed Dose Distributions in Water Phantom Irradiated by High Energy Photon Beam (물팬톰에 조사된 고에너지 광자선의 선량 분포 특성에 관한 이론적 고찰)

  • 최동락;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 1990
  • We have claculated the absorbed dose distributions in water phantom irradiated by high energy photon beam. PDD (Percent Depth Dose) and Beam Profile can be represented by functions of depths and distances by using one dimensional model model based on transport theory. The parameters on scattering and absorption are evaluated by using non-linear regression process method. The values neeessary for calculation are obtained by simple experiment. The calculated values are in good agreement with the measured values.

  • PDF

Dose Distribution of $^{60}$ Co Source as Brachytherapy in Tissue (근접조사 치료에 사용되는 $^{60}$ Co source의 조직내에서 선량분포)

  • 유명진
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.85-90
    • /
    • 1990
  • Berger formulation was used to calculate the dose distribution of $^{60}$ Co source in tissue. $^{60}$ Co source was supposed as point source. The effect of the stainless-steel around the source was considered and Taylor Approximation Method was used for calculating exposure build-up factor. Calculated depth dose data was compared with measured data which was measured by the ionization chamber.

  • PDF

전신방사선조사(TBI)시 다이오드측정기(Diode detector) 및 열형광선량계(TLD)를 이용하여 측정한 골조직 선량감쇠에 대한 고찰

  • 임현실;이정진;장인기;김완선
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.29 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • 목적 : 전신방사선조사(TBI)시 균등한 선량을 조사할 목적으로 사용되는 각 신체부위별 보상체(compensator) 두께의 결정은 열형광선량계(TLD)를 이용하여 표면선량(surface dose)을 측정하고, 심부선량(depth dose)으로 환산하는 방법을 주로 이용한다. 그러나 이와 같은 방법은 골(bone) 조직에 대한 선량감쇠(dose attenuation)의 영향이 고려되지 않아 신체중심부에서의 정확한 심부선량을 알 수가 없다. 이에 본 연구

  • PDF

Measurement of Relative Depth dose of Therapeutic Photon Beam Using One-Dimensional Fiber-Optic Phantom Dosimeter (1차원 광섬유 팬텀선량계를 이용한 치료용 광자선의 피부 및 선량보강영역에서 상대선량 측정)

  • Moon, Jin-Soo;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Park, Jang-Yeon;Cho, Young-Ho;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we fabricated a fiber-optic phantom dosimeter by arraying square type of plastic optical fibers in a PMMA phantom for measuring relative depth doses of therapeutic photon beams. To minimize the cross-talk between fiber-optic dosimeters, we selected appropriate septum by measuring leaked scintillating lights according to the various kinds of septa. In addition, we measured percentage depth doses of 6, 15 MV photon beams using a fiber-optic phantom dosimeter.

Analysis of Individual Exposure Dose of Workers and Clinical Practice Students in Radiation Management Area (방사선관리구역내의 종사자 및 임상실습 학생의 개인피폭선량 비교 분석)

  • Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.383-388
    • /
    • 2017
  • The purpose of this study was to compare radiation dose among workers in the radiation zone and to compare the doses of students in clinical practice in the same area to provide basic data on optimization of radiation protection. The subjects were 121 radiation related workers, 36 radiation workers, and 121 students who completed 8 weeks of clinical practice from Jan. 2016 to Dec. The depth and surface dose between the radiation related workers and the radiation workers were the highest with $.7440{\pm}1.676mSv$ and $.7753{\pm}1.730mSv$, respectively, and statistically significant (p<.01). Among the three groups, the depth dose was the highest at $.143{\pm}.136mSv$ for clinical practice students and the highest at surface dose of $.1513{\pm}.139mSv$. The lowest in both cases, The mean difference between the two groups was statistically significant (p<.01). In conclusion, it is necessary to manage thoroughly according to the ALARA(As Low As Reasonably Achievable) principle. Especially, it is necessary to systematically manage the dose of radiation for clinical students who are in the blind spot of radiation safety management.