• 제목/요약/키워드: Depth Propagation

검색결과 397건 처리시간 0.023초

통합적 인공지능 기법을 이용한 결함인식 (Crack identification based on synthetic artificial intelligent technique)

  • 심문보;서명원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

이온질화 처리강의 마모현상 분석에 관한 연구 (Study on the Analysis of Wear Phenomena of Ion-Nitrided Steel)

  • 조규식
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.42-52
    • /
    • 1997
  • This paper deals with wear characteristics of ion-nitrided metal theoretically and experimentally in order to analysis of wear phenomena. Wear tests show that compound layer of ion-nitrided metal reduces wear rate when the applied wear load is mall. However, as th load becomes large, the existence of compound layer tends to increase wear rate. The residual stress at the surface of ion-nitrided metal is measured, and the internal stress distribution is calculated when the normal and tangential forces are applied to the surface of metal. Compressive residual stress is largeest at the compound layer, and decreases as the depth from the surface increases. Calculation shows that the maximum stress exists at a certain depth from the surface when normal and tangential force are applied, and that the larger the wear load is the deeper the location of maximum stress becomes. In the analysis, it is found that under small applied wear load the critical depth, where voids and cracks may be created and propagated, is located at the compound layer, as the adhesive wear, where hardness is an important factor, is created the existence of compound layer reduces the amount of wear. When the load becomes large the critical depth is located below the compound layer, and delamination, which may be explained by surface deformation, crack nucleation and propagation, is created, and the existence of compound layer increases wear rate.

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

콘크리트 내의 공동탐사를 위한 전자기파 모델링 (A Study on the Modeling of Electromagnetic Wave Propagation for the Detection of a Delamination in Concrete Specimens)

  • 조윤범;임홍철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.119-124
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 25 mm delamination embedded at 25 mm, 50 mm, and 75mm depth are modeled in 3-dimension. Also, thickness change of delamination and permittivity change are modeled.

  • PDF

유한요소법을 이용한 버 형성 예측 모듈의 개발 (Development of a Module to Predict Burr Formation Using the Finite Element Method)

  • 고대철;고성림
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.170-179
    • /
    • 2000
  • The objective of this study is to develop an analytical module for the prediction of burr formation during cutting process using the finite element method. This module is based on the rigid-plastic finite element method, ductile fracture criterion, fracture propagation technique and node separation criterion. The sequence of burr formation from burr initiation through end of burr formation is simulated and investigated by this module. The effect of material properties, such as AL6061-T6, AL2024-T4 and Copper, and cutting condition, such as rake angle and cutting depth, on burr formation is also discussed in this study. To validate this module the analysis results are compared with experimental ones.

  • PDF

지진해일 전파모의를 위한 선형 천수방정식을 이용한 실용적인 분산보정기법 (Practical Dispersion-Correction Scheme for Linear Shallow-Water Equations to Simulate the Propagation of Tsunamis)

  • 조용식;손대희;하태민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1935-1939
    • /
    • 2006
  • In this study, the new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects such as linear Boussinesq equations for the propagation of tsunamis. And, dispersion-correction factor is determined to mimic the frequency dispersion of the linear Boussinesq equations. The numerical model developed in this study is tested to the problem that initial free surface displacement is a Gaussian hump over a constant water depth, and the results from the numerical model are compared with analytical solutions. The results by present numerical model are accurate in comparison with the past models.

  • PDF

신경망기법에 의한 칩브레이커의 성능평가 (Performance Evaluation of Chip Breaker Utilizing Neural Network)

  • 김홍규;심재형
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.64-74
    • /
    • 2007
  • The continuous chip in turning operation deteriorates precision of workpiece and causes a hazardous condition to operator. Thus the chip form control becomes a very important task for reliable machining process. So, grooved chip breaker is widely used to obtain reliable discontinuous chip. However, developing new cutting insert having chip breaker takes long time and needs lots of research expense due to a couple of processes such as forming, sintering, grinding and coating of product and many different evaluation tests. In this paper, performance of commercial chip breaker is evaluated with neural network which is learned with a back propagation algorithm. For the evaluation, several important elements(depth of cut, land, breadth, radius) which directly influence the chip formation were chosen among commercial chip breakers and were used as input values of neural network. With the results of these input values, the performance evaluation method was developed and applied that method to the commercial tools.

해저 변동에 의한 파낭의 시간에 따른 변화 (Propagation of Transient Waves due to Bottom Disturbances)

  • 서승남
    • 한국해안해양공학회지
    • /
    • 제5권4호
    • /
    • pp.288-295
    • /
    • 1993
  • 해저 변동에 의해 일정 수심 위를 진행하는 삼차원 파낭의 시간에 따른 변화에 대한 식을 제시하였다. 서(1993)의 해를 기초로 하여 유도된 해석해가 해저변위 함수의 convolution 적분형태로 표시된다. 세개의 상이한 해저변위 함수에 대한 해석해는 해면의 초기조건을 만족함을 보였고 유도한 해를 수치적분하여 파낭 분산효과에 의한 파고 감소에 대한 일반적인 특성을 도시하고 분석하였다.

  • PDF

Tomogram Enhancement using Iterative Error Correction Algorithm

  • Ko, Dae-Sik;Park, Jun-Sok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.9-13
    • /
    • 1996
  • We developed an iterative algorithm which could improve the resolution of reconstructed tomograms having random attenuation patterns and analyzed the limitation of this algorithm. The simple back-and forth propagation algorithm has depth resolution about four wavelengths. An iterative algorithm, based on back-and-forth propagation, can be used to improve the resolution of reconstructed tomograms. We analyzed the wavefield for multi-layered specimen and programmed iterative algorithm using Clanguage. Simulation results show that the images get clearer as the number of iterations increases. Also, unambiguous images can be reconstructed using this algorithm even when the layer separation is only two wavelengths. However, this iteration algorithm comes up with an incorrect solution for the number of projections less than five.

  • PDF

무한요소를 사용한 층상지반에 놓인 스트립기초의 진동전파해석 (Wave Propagation Analysis of a Strip Foundation in Layered Soils using Infinite Elements)

  • 윤정방;김두기;김유진;박종찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.202-209
    • /
    • 1996
  • In this paper, two dimensional vertical and comer infinite elements which can include multiple wave components to model underlying half space are developed. These elements are natural and economical to model underlying stiff half space or rock. To verify the behavior of these infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation on a viscoelastic soil profile are analyzed and compared with those of Tzong and Penzien who used the boundary solution method. Good agreements are noticed between the two methods. The influence of material properties like Poisson's ratio, material damping, and stiffness ratio of layers as well as the influence of geometrical properties such as layer thicknesses and depth of foundation embedment are studied. Example analysis is carried out for the shaking table which is located in KIMM(Korea Institute of Machinery and Materials), and the vertical and horizontal displacements of the analysis are compared with the measured, and show good results and demonstrate the efficiency of the proposed method.

  • PDF