• 제목/요약/키워드: Depth Measure Sensor

검색결과 73건 처리시간 0.032초

관성센서 기반 보행 분석 시스템 구현 (Implementation of Gait Analysis System Based on Inertial Sensors)

  • 조재성;강신일;이기혁;장성호;김인영;이종실
    • 재활복지공학회논문지
    • /
    • 제9권2호
    • /
    • pp.137-144
    • /
    • 2015
  • 본 논문은 하지의 움직임을 측정하고 분석할 수 있는 관성센서 기반 보행분석 시스템에 관한 것이다. 본 시스템 구현을 위해 자이로스코프, 가속도계 및 지자계 신호를 이용한 자세 방위 측정장치 모듈을 일체형으로 개발하였으며, 다수의 모듈을 환자의 분절에 부착하여 공간상에서 각 분절의 방위각을 제공할 수 있도록 하였다. 또한 재활과 관련된 많은 응용에 있어 중요한 생체역학 측정값인 신체 분절간의 관절각을 추출하는 알고리즘을 제안하였다. 개발한 자세 방위 측정장치 모듈의 성능을 평가하기 위하여 3차원 공간상의 변위 및 방위를 밀리미터 해상도로 제공할 수 있는 Vicon을 참조 측정 시스템으로 이용하였으며, yaw와 pitch에서 1.08, 1.72도의 평균 제곱근 오차를 얻을 수 있었다. 보행 분석 시스템의 성능 검증을 위하여 7개의 AHRS 모듈을 하지에 부착하고 고관절, 무릎, 발목에 대한 관절각을 계산하여, Vicon과의 비교 실험을 수행하였다. 실험 결과 본 연구에서 개발한 시스템은 뇌졸중 후 회복단계 동안 사지 및 보행 동작을 실시간으로 분석, 제공함으로서 재활의 효과, 난이도 조절 및 피드백 요소를 제공할 수 있을 것으로 판단된다.

  • PDF

수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안 (Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement)

  • 정진우;조광희;김민지
    • 한국측량학회지
    • /
    • 제35권6호
    • /
    • pp.527-534
    • /
    • 2017
  • 이 연구의 목적은 원하는 지점까지 자동으로 이동하고 정확한 수심에서 채수 하고 수질을 측정할 수 있는 무인장비를 개발하는데 있다. 이를 위해 채수 리프트 및 채수 컨테이너를 제작하고, VRS-GPS, 음향측심기, 및 수질 측정기를 장착한 무인 탐사체를 제작하였으며, 자동운항 알고리즘 및 프로그램, 자동 채수 프로그램, 수질분포도 작성 프로그램을 개발하였다. 유수지에서 실험한 결과 무인 탐사체는 오차범위 3m 내에서 약 93%의 정확도로 계획 경로를 따라 운항하였다. 또한 채수 리프트에 장착한 수질측정 센서로 대상지역의 수질을 실시간으로 획득하고 무선 인터넷을 통하여 서버에 전송하여 각 지점의 수질을 실시간으로 모니터링 할 수 있었다. 육상에서의 실험을 통해 채수 리프트는 약 94%의 정확도로 원하는 길이를 조절할 수 있었다. 무인 탐사체를 활용하여 자동화된 수질측정 방법은 접근이 어려운 지역에서의 수질측정이 가능하고, 작업자의 안전을 확보할 수 있을 것으로 판단된다.

도로 노면 안전성 분석을 위한 물고임 측정장비 개발 및 현장 적용성 연구 (Comprehensive Evaluation of Water-Reservoir Measuring Equipment for Highway Safety Analysis)

  • 이진각;윤덕근;조영오
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.127-135
    • /
    • 2013
  • PURPOSES : The purpose of this study is development of automatic equipment to measure the road water-reservoir which can be one of factors for road traffic safety inspection and its application to safety analysis. METHODS : The scopes of this study are the examination of the riskiness and location of road water-reservoir through literature review, development of appropriate sensor and automatic equipment to survey the road water-reservoir and evaluation of field application. RESULTS: The laser lighting and IR camera were selected to develop the equipment. It was found from the field calibration that there is a high correlation between rutting and road water-reservoir and road water-reservoir caused by rutting can be correctly calculated. About 20.2km of national highway were inspected for case study and field application. It was found from correlation of traffic incident that 2.08km of the latent length for water-reservoir which is related to 12 traffic incidents were analyzed. CONCLUSIONS : This technique can be utilized evaluation method for road condition such as road water-reservoir for conventional evaluation system such as road traffic safety assessment and safety analysis and it can be use to new evaluation system to apply various road condition and traffic condition.

레이저 구조광을 이용한 로봇 목표 추적 방법 (Robot Target Tracking Method using a Structured Laser Beam)

  • 김종형;고경철
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.

항공기 주기환경이 대기부식위험도에 미치는 영향 (The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity)

  • 윤주희;이두열;박승렬;김민생;최동수
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

수온 모니터링 기능을 탑재한 심장마비 방지용 목욕 보조 시스템 (Development of a Bath Assistive System with Water Temperature Monitoring to Prevent Heart Attack)

  • 강소명;웨이췬
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.242-249
    • /
    • 2019
  • Old people and patients with cardiovascular disease could die of a heart attack in the bath with heated water for a long time. Various researches have been studied to prevent these accidents from happening such as measuring the ECG signal when taking bath. However, these devices are hard to use and the higher price is not easily accepted by the public. In this paper, a low-cost and use-friendly, real time high precision water temperature monitoring device to prevent heart attack in the bath was developed. The device with waterproof design that lets the device can float on the surface of the water, and an accurate way to make water temperature measurement method was proposed by this paper that is immerging the sensor into water with 4cm depth to measure the temperature of underwater. The manufactured device was conducted to two experiments; one was to verify the basic functions of the device, and another one was for compare the proposed device with commercial products for monitoring the water temperature in the bathtub. As the experimental results shown, the proposed device has stable performance for the water temperature measurement and communicating with laptop in wireless.

ILOCAT: 실내 위치 기반 서비스를 위한 3차원 위치 획득 인터랙티브 GUI Toolkit (ILOCAT: an Interactive GUI Toolkit to Acquire 3D Positions for Indoor Location Based Services)

  • 김석환
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.866-872
    • /
    • 2020
  • 실내 위치 기반 서비스는 사람과 물체 간의 거리에 기반한 서비스를 제공한다. 이러한 실내 위치 기반 서비스는 최근 키넥트와 같은 저렴한 가격의 깊이 센서를 활용하여 구현하는 경우가 증가하고 있다. 다수의 깊이 센서들은 사람의 위치를 트랙킹하는 기능을 기본으로 제공한다. 하지만 물체의 위치는 직접 수동으로 측정해야 한다. 물체의 3차원 위치를 획득하기 위해서는 3차원 인터랙션이 필요한데 이는 일반 사용자들에게는 어렵다는 단점이 있다. 반면에 일반 사용자가 쉽게 사용할 수 있는 GUI (Graphical User Interface) 의 경우에는 3차원 위치 획득이 제한된다. 본 연구는 이러한 문제를 해결하고자 개발된 ILOCAT (Interactive LOcation Context Authoring Toolkit)을 제안한다. ILOCAT 은 일반 사용자들이 실공간에서 GUI를 활용하여 쉽게 물체의 3차원 위치를 취득할 수 있도록 설계되었다. 본 논문은 ILOCAT 의 디자인 및 구현을 상세히 설명한다.

추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가 (Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation)

  • 박형석;이은주;지현서;최선화;정세웅
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

광섬유와 OTDR을 이용한 실시간 수위 및 온도 측정 (Real-time Measurements of Water Level and Temperature using Fiber-optic Sensors Based on an OTDR)

  • 심혁인;유욱재;신상훈;장재석;김재석;장경원;조승현;문주현;이봉수
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1239-1244
    • /
    • 2014
  • In this study, two fiber-optic sensors were fabricated to measure water level and temperature using optical fibers, a coupler, a Lophine and an OTDR (optical time-domain reflectometer). First, using Fresnel's reflection generated at the distal-ends of each optical fiber, which was installed at different depth, we measured the water level according to the variation of water level. Next, we also measured the temperature of water using a temperature sensing probe based on the Lophine, whose absorbance changes with the temperature. The measurable temperature range of the fiber-optic sensor is from $5^{\circ}C$ to $65^{\circ}C$ because the maximum operation temperature of the optical fiber without a physical deterioration is up to $80^{\circ}C$.

Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings

  • Cavallaro, Rauno;Iannelli, Andrea;Demasi, Luciano;Razon, Alan M.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.125-168
    • /
    • 2015
  • Dynamic aeroelastic behavior of structurally nonlinear Joined Wings is presented. Three configurations, two characterized by a different location of the joint and one presenting a direct connection between the two wings (SensorCraft-like layout) are investigated. The snap-divergence is studied from a dynamic perspective in order to assess the real response of the configuration. The investigations also focus on the flutter occurrence (critical state) and postcritical phenomena. Limit Cycle Oscillations (LCOs) are observed, possibly followed by a loss of periodicity of the solution as speed is further increased. In some cases, it is also possible to ascertain the presence of period doubling (flip-) bifurcations. Differences between flutter (Hopf's bifurcation) speed evaluated with linear and nonlinear analyses are discussed in depth in order to understand if a linear (and thus computationally less intense) representation provides an acceptable estimate of the instability properties. Both frequency- and time-domain approaches are compared. Moreover, aerodynamic solvers based on the potential flow are critically examined. In particular, it is assessed in what measure more sophisticated aerodynamic and interface models impact the aeroelastic predictions. When the use of the tools gives different results, a physical interpretation of the leading mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like configurations the aeroelastic response is very sensitive to the wake's shape. As a consequence, it is suggested that a more sophisticate modeling of the wake positively impacts the reliability of aerodynamic and aeroelastic analysis. For SensorCraft-like configurations some LCOs are characterized by a non-synchronous motion of the inner and outer portion of the lower wing: the wing's tip exhibits a small oscillation during the descending or ascending phase, whereas the mid-span station describes a sinusoidal-like trajectory in the time-domain.