• Title/Summary/Keyword: Depth Change

Search Result 2,324, Processing Time 0.034 seconds

Excitation Wavelength Dependence of Laser Ablation Mechanism of Urethane-Urea Copolymer Film Studied by Time-Resolved Absorbance Measurements

  • Tada, Takuji;Asahi, Tsuyoshi;Masuhara, Hiroshi;Tsuchimori, Masaaki;Watanabe, Osamu
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 2003
  • The excitation wavelength dependence of laser ablation dynamics of an azobenzene-containing urethane-urea copolymer film was investigated by measuring the laser fluence dependence of etch depth, transient absorbance change at each excitation wavelength, and transient absorption spectra. Moreover expansion/contraction dynamics was studied by applying nanosecond time-resolved interferometry. The threshold was determined at several excitation wavelengths from etch depth measurement, while time-integrated absorbance was obtained under excitation conditions. The photon energy required to remove the topmost of surface layer of the film did not .depend on excitation wavelength, and the penetration depth of excitation pulse dominated the etch depth. When the excitation wavelength was longer than 500 nm, permanent swelling was clearly observed but not for shorter wavelength excitation. In the latter case, photoisomerization occurred during excitation and the following photoreduction may play an important role. On the basis of the observations made in this study, a photochemical and photothermal mechanisms can explain mostly the short and long wavelength excitation results, respectively.

  • PDF

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Comparisons of Injury Patterns of Far Side Impact Studies with the Various Types of Dummy (승객더미모델에 따른 Far side 충돌해석에서 상해비교분석)

  • Park, Jiyang;Youn, Younghan;KIM, Minyong;Kim, Inbae;Shin, Jaekon;Lee, Eundok;RHEE, Zhangkyu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 2017
  • In order to reduce the damage of life and property caused by an automobile accident, we should design new car models and safety standard with reference to the data analysis and in-depth investigation of the accident. In-depth research and analysis of the current world other than the police investigation team (GIDAS, iGLAD, NHTSA, etc.) and collect in-depth data. Going to develop a safety policy to make it much safer cars based on this data. However, the country still does not have the advantage of KIDAS data Safety Policy Direction. In KNCAP tests, there is nothing in order to protect far side passengers even if far side impact causes approximately 50% injured people. Based on DBs like KIDAS (Korean In-Depth Accident Study) and GIDAS, far side passengers got injured as much as near side passengers did. So as to protect far side passengers, KNCAP has to change the test method of side crashes. In this study, injury severities to compare with ES-2, World SID and Thor dummies and the movements of far and near side passengers, SLED TEST was used.

In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling (엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측)

  • 최종근;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle (수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구)

  • Seol, Dong-Myung;Rhee, Key-Pyo;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.

Sensitivity Analysis on Hybrid Element Model for Harbor Oscillation (항만 공진에 대한 복합요소 수치모형의 민감도 분석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.174-184
    • /
    • 1996
  • In the present study, for fully-open rectangular harbors, sensitivity analyses are made for the major parameters which are relevant to the practical application of a hybrid element model widely used fur the analysis of harbor oscillation. The results show that it is desirable to extend the finite element region to the area in which depth change is not large and that it is appropriate to take the depth of the outer region for analytic solution as the average along the boundary between the two regions. It is expected that the number of Fourier components of the analytic solution may not be important for a constant-depth simple-shaped harbor but its significance may increase for harbors of varying depth and complex geometry. It is found that the effect of incident wave direction is not significant for the first resonance mode but its effect becomes important as the bottom slope increases, especially for the higher resonance modes.

  • PDF

Pile Contact Depth Effects in Rubbed Polyimide(PI) Films

  • Kim, Gi-Jeong;Gwon, Hyeok-Min;Lee, Sang-Mun;Lee, Cheol-Gu;Gwak, Mu-Seon;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.398-398
    • /
    • 2010
  • To determine the molecular directionality of PI chains depending on rubbing condition, we measured the angle resolved near edge X-ray absorption fine structure (NEXAFS) spectra at C K-edge of the rubbed PI films. Twisted nematic mode PI (PI-TN) and in plane switching mode PI (PI-IPS) were introduced to examine the effect of rubbing conditions on the chain directionality. The average tilt angle a of the PI molecules was estimated through the measured intensity change of $C=C\;{\pi}^*$ in NEXAFS C K-edge spectrum by controlling the stage speed and the pile contact depth. After rubbing, the irregular molecular direction changed to a regular direction with a molecular tilt angle of $51.2^{\circ}$ for PI-TN and $49.6^{\circ}$ for PI-IPS at the rubbing condition of the roll speed of 1000 rpm, stage speed of 50 mm/sec, and file contact depth of 0.3 mm. The molecular tilt angle $\alpha$ was linearly decreased in the PI-TN and PI-IPS samples with increasing depth of the pile contact.

  • PDF

Saturable Absorber Reflectors Based on Guided-mode Resonance in Slot Waveguides (도파로공진을 이용한 슬롯도파로 포화흡수체 반사기)

  • Kim, Myung-Hwan;Kim, Sang-In
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.117-121
    • /
    • 2011
  • We propose a saturable absorber reflector based on guided-mode resonance. A carbon nanotube is used as a saturable absorber. By tuning the fill factor, modulation depth can be increased without a change of height of the CNT. We investigate the reflector properties such as modulation depth, bandwidth and peak reflectance as a function of the height of the CNT and the fill factor. The advantage of the proposed reflector is that it can reduce saturation energy by 50 times compared with CNT thin film of 100~200nm.

Numerical Simulation for Effluent Transport According to Change in Depth of Marine Outfall in Masan Bay Using a Particle Tracking Model (입자추적모델을 이용한 마산만 해중방류구 수심 변화에 따른 방류수 거동 수치모의)

  • Kim, Jin Ho;Jung, Woo sung;Kim, Dong-Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.954-959
    • /
    • 2022
  • Marine outfalls are used to discharge treated liquid effluents to the environment. An efficiently designed, constructed and operated marine outfall effectively dilutes the discharged effluent, thereby reducing the risk to biota and humans dependent upon the marine environment. In this study, we investigated the effluent transport from a marine outfall at different depths in Masan Bay. A particle-tracking model was used to predict the dispersion of effluent. The model results indicate that some particles released from a depth of 13 m move to the inner area of Masan Bay within 48 h. As the release depth increases after 48 h, the particles move further southward. This suggests that effluent from the outer area of Masan Bay can affect the inner area, and that this effect can be reduced by increasing the depth of effluent release.