Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.3.117

Saturable Absorber Reflectors Based on Guided-mode Resonance in Slot Waveguides  

Kim, Myung-Hwan (Department of Electronic Engineering and Computer, Ajou University)
Kim, Sang-In (Department of Electronic Engineering and Computer, Ajou University)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.3, 2011 , pp. 117-121 More about this Journal
Abstract
We propose a saturable absorber reflector based on guided-mode resonance. A carbon nanotube is used as a saturable absorber. By tuning the fill factor, modulation depth can be increased without a change of height of the CNT. We investigate the reflector properties such as modulation depth, bandwidth and peak reflectance as a function of the height of the CNT and the fill factor. The advantage of the proposed reflector is that it can reduce saturation energy by 50 times compared with CNT thin film of 100~200nm.
Keywords
Saturable absorber; Mode-locking; Guided-mode resonance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).   DOI
2 U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors(SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Select. Topics Quantum Electron. 2, 435-453 (1996).   DOI
3 W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, "Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers," Advanced Functional Materials 20, 1937-1943 (2010).   DOI
4 T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-913 (1985).   DOI
5 S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonance in planar dielectric-layer diffraction in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990).   DOI
6 S. Fan and J. D. Joannopoulos, "Analysis of guided resonance in photonic crystal slabs," Phys. Review B 65, 235112 (2002).   DOI
7 R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).   DOI
8 S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2612 (1993).   DOI
9 S. Tibuleac and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am. A 14, 1617-1626 (1997).   DOI
10 Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, "Optical bistable device based on guided-mode resonance in slab waveguide grating," Opt. Express 17, 23459-23467 (2009).   DOI
11 V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).   DOI
12 H. A. Haus, Waves and Field in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, USA, 1984).
13 H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, USA, 1985).
14 U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).   DOI