• 제목/요약/키워드: Deposition temperature

검색결과 3,453건 처리시간 0.031초

Cu(InGa)Se$_2$ 박막의 성장온도에 따른 태양전지의 광전특성 분석 (Photovoltaic Properties of Solar Cells with Deposition Temperature of Cu(InGa)Se$_2$ Films)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.330-333
    • /
    • 2002
  • The substrate temperature is an important parameter in thin film deposition process. In this paper the effects of the substrate temperature on the properties of CuIn0.75Ga0.25Se2(CIGS) thin films are reported. Structure, surface morphology and optical properties of CIGS thin films deposited at various substrate temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher substrate temperatures the films displayed a higher degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously These results were supported by experimental work using Raman spectroscopy. The Raman spectra of the as-grown CIGS thin films show only the Al mode peak. The intensity of this peak was enhanced at higher deposition temperatures. Scanning electron microscopy (SEM) results revealed very small grains in films fabricated at 48$0^{\circ}C$ substrate temperature. When the substrate temperature was increased the average grain size also increased together with a reduction in the number and size of the voids. The deposition temperature also had a significant influence on the transmission spectra.

  • PDF

저온에서 AC PDP의 MgO 증착 조건과 방전 안정성 대한 연구 (Relationships between MgO Manufacturing condition and Misfiring in low temperature)

  • 류성남;신미경;김영기;신중홍;유충희;김동현;이호준;박정후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.153-157
    • /
    • 2002
  • This paper deals with the relationships between MgO manufacturing condition and misfiring at low temperature. The characteristics of MgO are affected by substrate temperature and MgO deposition current. In this study. the. substrate temperature was varied from $100^{\circ}C$ to $200^{\circ}C$. And the MgO deposition current was varied from 5mA to 20mA. As a result. the misfiring at low temperature was decreased in the panels with substrate temperature $200^{\circ}C$ and MgO deposition current 5mA. These results may be explained that the higher substrate temperature and lower MgO deposition current makes the denser film formation.

  • PDF

Graphene Synthesized by Plasma Enhanced Chemical Vapor Deposition at Low-Temperature

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.248-248
    • /
    • 2012
  • Synthesis graphene on Cu substrate by plasma-enhanced chemical vapor deposition (PE-CVD) is investigated and its quality's affection factors are discussed in this work. Compared with the graphene synthesized at high temperature in chemical vapor deposition (CVD), the low-temperature graphene film by PE-CVD has relatively low quality with many defects. However, the advantage of low-temperature is also obvious that low melting point materials will be available to synthesize graphene as substrate. In this study, the temperature will be kept constant in $400^{\circ}C$ and the graphene was grown in plasma environment with changing the plasma power, the flow rate of precursors, and the distance between plasma generator coil and substrates. Then, we investigate the effect of temperature and the influence of process variables to graphene film's quality and characterize the film properties with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.262-267
    • /
    • 2015
  • We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.

PECVD에 의해 작성된 탄소계 박막의 전계전자방출특성에 대한 증착온도 의존성에 관한 연구 (Effect of deposition temperature on field emission property of carbon thin film grown by PECVD)

  • 류정탁;백양규;;이형주
    • 한국진공학회지
    • /
    • 제12권1호
    • /
    • pp.35-39
    • /
    • 2003
  • 본 논문에서는 혼합가스 없이 메탄가스만을 사용하여 RF PECVD 방법으로 성장시킨 a-C 박막의 전계전자방출특성을 조사하였다. 또한 본 논문은 박막의 표면형태와 결정들의 결합구조가 어떻게 전계전자방출에 영향을 미치는가에 관하여 보고된다, a-C 박막의 전계전자방출특성은 증착온도에 크게 의존함이 확인되었다. 실온에서 성장된 카본박막의 문턱전압은 20 V/$\mu\textrm{m}$이었다. 그러나 증착온도가 $500^{\circ}C$로부터 $600^{\circ}C$로 증가함에 따라 문턱전압은 17 V/$\mu\textrm{m}$에서 10 V/$\mu\textrm{m}$으로 감소하였으며 $800^{\circ}C$에서는 문턱전압이 B V/$\mu\textrm{m}$로 크게 개선되었다. 박막의 표면형태, 구조적인 특징과 전계전자방출특성의 관계를 조사하기 위해서 라만 스펙트럼과 주사형전자현미경 (scanning electron microscopy : SEM)을 사용하였다. 박막의 물리적, 화학적, 특성은 증착온도에 매우 의존하며 이들 특성들은 전계전자방출특성에 큰 영향을 미친다는 사실을 발견했다.

플라즈마 유기금속 화학증착을 이용한 지르코니아 박막제조 (fabrication of Zirconia Thin Films by Plasma Enhanced Metal-Organic Chemical Vapor Deposition)

  • 김기동;조영아;신동근;전진석;최동수;박종진
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.155-162
    • /
    • 1999
  • Zirconia thin films of uniform structure were fabricated by plasma-enhanced metal-organic chemical vapor deposition. Deposition conditions such as substrate temperature were observed to have much influence on the formation of zirconia films, therefore the mechanism of decomposition of $Zr[TMHD]_4$precursor and film growth were examined by XRD, FT-IR etc., as well as the determination of the optimal deposition condition. From temperature dependence on zirconia, below the deposition temperature of 523K, the amorphous zirconia was formed while the crystalline of zirconia with preferred orientation of cubic (200) was obtained above the temperature. Deposits at low temperatures were investigated by FT-IR and the absorption band of films revealed that the zirconia thin film was in amorphous structure and has the same organic band as that of Zr precursor. In case of high temperature, it was found that Zr precursor was completely decomposed and crystalline zirconia was obtained. In addition, at 623K the higher RF power yielded the increased crystallinity of zirconia implying an increase in decomposition rate of precursor. However, it seems that RF power has nothing with the zirconia deposition process at 773K. It was found that the proper bubbler temperature of TEX>$Zr[TMHD]<_4$ precursor is needed along with high flow rate of carrier gas. Through AFM analysis it was determined that the growth mechanism of the zirconia thin film showed island model.

  • PDF

원자층 증착법을 이용한 AlN 박막의 성장 및 응용 동향 (Growth of Aluminum Nitride Thin Films by Atomic Layer Deposition and Their Applications: A Review)

  • 윤희주;김호경;최병준
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.567-577
    • /
    • 2019
  • Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of $150{\sim}550^{\circ}C$ with alkyl/amine or chloride precursors. Due to the low reactivity with $NH_3$ reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.

실험계획법을 이용한 대구경용 코발트 박막의 스퍼터 조건 최적화 (Optimizing the Cobalt Deposition Condition using the Experiment Design)

  • 정성희;송오성
    • 한국자기학회지
    • /
    • 제12권6호
    • /
    • pp.224-230
    • /
    • 2002
  • 직경 200mm의 실리콘 기판에 균일한 코발트 금속박막을 증착하는 DC-스퍼터 장비에서 공정변수는 증착온도, 증착압력, DC power로 하고 종속변수(response)는 면저항, 면저항 균일도로 하는 '||'&'||'quot;통계적 실험방법'||'&'||'quot;을 채택한 실험을 수행하여 Co 박막의 공정 특성에 대해 다음과 같은 결과를 얻었다 '||'&'||'quot;통계적 실험방법'||'&'||'quot;을 이용한 Co박막의 공정 특성을 조사하는 본 실험에서 면저항과 면저항 균일도는 0.05 이하의 significance수치. 낮은 RMS error, 0.91 이상의 R-sq수치로부터 실험의 우수한 신뢰성을 확인하였다. 면저항에 대한 공정변수의 영향성은 증착온도가 -1.83$\Omega$/$\square$의 감소효과, 증착압럭이 1.17$\Omega$/$\square$의 증가 효과. DC power가 -0.65$\Omega$/$\square$의 감소 효과로 실험 구간에서 일정한 경향의 영향성을 보였으며, 면저항 균일도에서는 증착온도에 의해 $25^{\circ}C$~147$^{\circ}C$에서 -4.04%의 감소로 증착온도에 가장 민감함을 확인하였다. Co 박막의 최적 증착 조건은 증착온도 $25^{\circ}C$, 증착압력 12mTorr, DC power 1500 W로 예상되었다.

유동층 화학증착법을 이용하여 증착한 열분해 탄소의 특성에 미치는 증착조건의 영향 (Effect of Deposition Parameters on the Properties of Pyrolytic Carbon Deposited by Fluidized-Bed Chemical Vapor Deposition)

  • 박정남;김원주;박종훈;조문성;이채현;박지연
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.406-410
    • /
    • 2008
  • The properties of pyrolytic carbon (PyC) deposited from $C_2H_2$ and a mixture of $C_2H_2/C_3H_6$ on $ZrO_2$ particles in a fluidized bed reactor were studied by adjusting the deposition temperature, reactant concentration, and the total gas flow rate. The effect of the deposition parameters on the properties of PyC was investigated by analyzing the microstructure and density change. The density could be varied from $1.0\;g/cm^3$ to $2.2\;g/cm^3$ by controlling the deposition parameters. The density decreased and the deposition rate increased as the deposition temperature and reactant concentration increased. The PyC density was largely dependent on the deposition rate irrespective of the type of the reactant gas used.

레이저를 이용한 금속액적 적층시 온도분포와 잔류응력 해석 (Analysis of Temperature Distribution and Residual Stress in Deposition Process of Metal Droplet by Using Laser Beam)

  • 윤진오;양영수
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.187-193
    • /
    • 2005
  • The temperature distribution of the deposited droplet was predicted by using the finite element analysis and it was assumed that the droplet was axisymmetrical model. The analysis of residual stress was performed with the temperature data, which is obtained from the result. Axisymmetric droplet is deposited three times to consider the actual phenomenon of droplet deposition. The analysis of the temperature distribution is respectively performed whenever the axisymmetric droplet is laminated and the residual stresses of the laminated axisymmetric droplet are calculated with the value of the temperature distribution.