• 제목/요약/키워드: Deposition property

검색결과 589건 처리시간 0.034초

Preparation of LaGaO3 Based Oxide Thin Film on Porous Ni-Fe Metal Substrate and its SOFC Application

  • Ju, Young-Wan;Matsumoto, Hiroshige;Ishihara, Tatsumi;Inagaki, Toru;Eto, Hiroyuki
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.796-801
    • /
    • 2008
  • $LaGaO_3$ thin film was prepared on Ni-Fe metal porous substrate by Pulsed Laser Deposition method. By the thermal reduction, the dense $NiO-{Fe_3}{O_4}$ substrate is changed to a porous Ni-Fe metal substrate. The volumetric shrinkage and porosity of the substrate are controlled by the reduction temperature. It was found that a thermal expansion property of the Ni-Fe porous metal substrate is almost the same with that of $LaGaO_3$ based oxide. $LaGaO_3$ based electrolyte films are prepared by the pulsed laser deposition (PLD) method. The film composition is sensitively affected by the deposition temperature. The obtained film is amorphous state after deposition. After post annealing at 1073K in air, the single phase of $LaGaO_3$ perovskite was obtained. Since the thermal expansion coefficient of the film is almost the same with that of LSGM film, the obtained metal support LSGM film cell shows the high tolerance against a thermal shock and after 6 min startup from room temperature, the cell shows the almost theoretical open circuit potential.

Thermal Stability of Self-formed Barrier Stability Using Cu-V Thin Films

  • 한동석;문대용;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.188-188
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Meta Oxide Semiconductor) based electronic devices, the electronic devices, become much faster and smaller size that are promising property of semiconductor market. However, very narrow interconnect line width has some disadvantages. Deposition of conformal and thin barrier is not easy. And metallization process needs deposition of diffusion barrier and glue layer for EP/ELP deposition. Thus, there is not enough space for copper filling process. In order to get over these negative effects, simple process of copper metallization is important. In this study, Cu-V alloy layer was deposited using of DC/RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane SiO2/Si bi-layer substrate with smooth surface. Cu-V film's thickness was about 50 nm. Cu-V alloy film deposited at $150^{\circ}C$. XRD, AFM, Hall measurement system, and AES were used to analyze this work. For the barrier formation, annealing temperature was 300, 400, $500^{\circ}C$ (1 hour). Barrier thermal stability was tested by I-V(leakage current) and XRD analysis after 300, 500, $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However vanadium-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Therefore thermal stability of vanadium-based diffusion barrier is desirable for copper interconnection.

  • PDF

Culturing of Rat Intestinal Epithelial Cells-18 on Plasma Polymerized Ethylenediamine Films Deposited by Plasma Enhanced Chemical Vapor Deposition

  • Choi, Chang-Rok;Kim, Kyung-Seop;Kim, Hong-Ja;Park, Heon-Yong;Jung, Dong-Geun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1357-1359
    • /
    • 2009
  • Many researchers studied cell culturing on surfaces with chemical functional groups. Previously, we reported surface properties of plasma polymerized ethylenediamine (PPEDA) films deposited by plasma enhanced chemical vapor deposition with various plasma conditions. Surface properties of PPEDA films can be controlled by plasma power during deposition. In this work, to analyze correlation of cell adherence/proliferation with surface property, we cultured rat intestinal epithelial cells-18 on the PPEDA films deposited with various plasma powers. It was shown that as plasma power was decreased, density of cells cultured on the PPEDA film surface was increased. Our findings indicate that plasma power changed the amine density of the PPEDA film surface, resulting in density change of cells cultured on the PPEDA film surface.

Pulsed Laser Deposition 방법으로 증착된 Fe3O4 나노선의 성장과 특성 (Fabrication and Properties of Fe3O4 Nanowires Using Pulsed Laser Deposition)

  • 윤종구;김진아;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.64-67
    • /
    • 2013
  • $Fe_3O_4$(magnetite) having half metallic property attracts great attention material with high curie temperature in spintronics. $Fe_3O_4$ thin films and nanowires were grown onto c-$Al_2O_3$(0001) at various substrate temperatures. $Fe_3O_4$ films deposited from 300 to $600^{\circ}C$ are influenced by thermal stress induced from mismatch of thermal expansion coefficient between $Fe_3O_4$ and $Al_2O_3$ (0001) substrate. The $Fe_3O_4$ nanowires grown at $640^{\circ}C$ showed a diameter of 130 nm and a length of $2-10{\mu}m$. The nanowire arrays fabricated by pulsed laser deposition technique have high coercivity($H_c$) of 608 Oe and Squareness($M_r/M_s$) of 0.68 in perpendicular direction.

CVD 반응기 내에서의 유동장에 대한 샤워헤드 지름의 영향에 대한 수치적 연구 (EFFECTS OF SHOWERHEAD DIAMETERS ON THE FLOWFIELDS IN A RF-PECVD REACTOR)

  • 김유재;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1475-1480
    • /
    • 2004
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) process uses unique property of plasma to modify surfaces and to achieve the high deposition rates. In this study, a vertical thermal RF-PECVD (Radio Frequency-PECVD) reactor is modeled to investigate thermal flow and the deposition rates with various shapes of the showerhead. The showerhead in the CVD reactor has the shape of a ring and gases are injected in parallel with the susceptor, which is a rotating disk. In order to achieve the high deposition rates, we have simulated the thermal flow fields in the reactor with several showerhead models. Especially the effects of the number of injection holes and the rotating speed of the susceptor are studied. Using a commercial code, CFDACE, which uses FVM (Finite Volume Method) and SIMPLE algorithm, governing equations have been solved for the pressure, mass-flow rates and temperature distributions in the CVD reactor. With the help of the Nusselt number and Sherwood number, the heat and mass transfers on the susceptor are investigated. In order to characteristics of measure the flatness of the layer, furthermore, the relative growth rate (RGR) is considered.

  • PDF

계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향 (Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips)

  • 김부종;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

태양전지용 CdS 박막의 구조적 및 광학적 특성에 미치는 반응용액의 pH 영향 (Effects of pH of Reaction Solution on the Structural and Optical Properties of CdS Thin Films for Solar Cell Applications)

  • 이재형
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.616-621
    • /
    • 2011
  • In this paper, CdS thin films, which were widely used window layer of the CdTe and the Cu(In,Ga)$Se_2$ thin film solar cell, were grown by chemical bath deposition, and effects of pH of reaction solution on the structural and optical properties were investigated. For pH<10.5, as the pH of reaction solution was higher, the deposition rate of CdS films was increased by improving ion-by-ion reaction in the substrate surface and the crystallinity of the films was improved. However, when the pH was higher than 10.5, the deposition rate was decreased because of smaller $Cd^{2+}$ ion concentration in the reaction solution. Also, the crystallinity of the films were deteriorated. The CdS films deposited at lower pH showed poor optical transmittance due to adsorbed colloidal particles, while the transmittance was improved for higher pH.

Study on Corrosion Properties of Additive Manufactured 316L Stainless Steel and Alloy 625 in Seawater

  • Jung, Geun-Su;Park, Yong-Ha;Kim, Dae-Jung;Lim, Chae-Seon
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.258-266
    • /
    • 2019
  • The objective of this study was to evaluate corrosion resistance of additive manufactured 316L stainless steel and alloy 625 powders widely used in corrosion resistance alloys of marine industry in comparison with cast alloys. Directed Energy Deposition (DED) method was used in this work for sample production. DED parameter adjustment was also studied for optimum manufacturing and for minimizing the influence of defects on corrosion property. Additive manufactured alloys showed lower corrosion resistance in seawater compared to cast alloys. The reason for the degradation of anti-corrosion property was speculated to be due to loss of microstructural integrity intrinsic to the additive manufacturing process. Application of heat treatment with various conditions after DED was attempted. The effect of heat treatments was analyzed with a microstructure study. It was found that 316L and alloy 625 produced by the DED process could recover their expected corrosion resistance when heat treated at 1200 ℃.

플라즈마 공중합 고분자 절연막과 펜타센 반도체막의 계면특성 (Interface Charateristics of Plasma co-Polymerized Insulating Film/Pentacene Semiconductor Film)

  • 신백균;임헌찬;육재호;박종관;조기선;남광우;박종국;김용운;정무영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1349_1350
    • /
    • 2009
  • Thin films of pp(ST-Co-VA) were fabricated by plasma deposition polymerization (PVDPM) technique. Properties of the plasma polymerized pp(ST-Co-VA) thin films were investigated for application to semiconductor device as insulator. Thickness, dielectric property, composition of the pp(ST-Co-VA) thin films were investigated considering the relationship with preparation condition such as gas pressure and deposition time. In order to verify the possibility of application to organic thin film transistor, a pentacene thin film was deposited on the pp(ST-Co-VA) insulator by vacuum thermal evaporation technique. Crystalline property of the pentacene thin film was investigated by XRD and SEM, FT-IR. Surface properties at the pp(ST-Co-VA)/pentacene interface was investigated by contact angle measurement. The pp(ST-Co-VA) thin film showed a high-k (k=4.6) and good interface characteristic with pentacene semiconducting layer, which indicates that it would be a promising material for organic thin film transistor (OTFT) application.

  • PDF

ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가 (A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route)

  • 여인철;한재길;강인철
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.