DOI QR코드

DOI QR Code

A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route

ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가

  • Yeo, In-Chul (Department of Mechanical Engineering, Incheon University) ;
  • Han, Jae-Kil (Technology Convergence Center, Incheon Technopark) ;
  • Kang, In-Cheol (Technology Convergence Center, Incheon Technopark)
  • 여인철 (인천대학교 기계시스템 공학부) ;
  • 한재길 ((재)인천테크노파크 융복합산업지원센터) ;
  • 강인철 ((재)인천테크노파크 융복합산업지원센터)
  • Received : 2012.10.10
  • Accepted : 2012.11.19
  • Published : 2012.12.28

Abstract

This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

Keywords

References

  1. W. Li and L. Gao: Biomaterials, 24 (2003) 937. https://doi.org/10.1016/S0142-9612(02)00428-3
  2. G. Willmann, H. J. Fruh and H. G. Pfaff: Biomaterials, 17 (1996) 2157. https://doi.org/10.1016/0142-9612(96)00042-7
  3. B. T. Lee and K. Hiraga: J. Mater. Res., 9 (1994) 1199. https://doi.org/10.1557/JMR.1994.1199
  4. B. T. Lee, D. H. Jang, I.C. Kang and C. W. Lee: J. Am. Ceram Soc., 88 (2005) 2874-2878. https://doi.org/10.1111/j.1551-2916.2005.00519.x
  5. J. Dusza and S. M. Barinov: Scrip. Mater., 28 (1993) 417. https://doi.org/10.1016/0956-716X(93)90076-5
  6. G. Y. Lin and T. C. Lei: Ceram. Int., 24 (1998) 313. https://doi.org/10.1016/S0272-8842(97)00017-5
  7. D. M. Liua and W. H. Tuanb: Mater. Chem. & Phys., 48 (1997) 258. https://doi.org/10.1016/S0254-0584(96)01898-6
  8. A. Zsunar: Mater. & Design, 29 (2008) 1690. https://doi.org/10.1016/j.matdes.2008.03.029
  9. B. T. Lee, N. Y. Shin, J. K. Han and H. Y. Song: Mater. Scien. & Engin. A, 429 (2006) 348. https://doi.org/10.1016/j.msea.2006.05.090
  10. B. T. Lee, K. H. Kim and J. K. Han: J. Mater. Res., 19 (2004) 3234. https://doi.org/10.1557/JMR.2044.0414
  11. I. H. Oh, J. Y. Lee, J. K. Han, H. J. Lee and B. T. Lee: Surf. & Coat. Tech., 192 (2005) 39. https://doi.org/10.1016/j.surfcoat.2004.04.064
  12. G. M. Shi, J. K. Han, Z. D. Zhang, H. Y. Song and B. T. Lee: Surf. & Coat. Tech., 195 (2005) 333. https://doi.org/10.1016/j.surfcoat.2004.08.186