• Title/Summary/Keyword: Deposition property

Search Result 589, Processing Time 0.024 seconds

A Study on the Dielectric Properties and Electrical Conduction of PVDF Thin Films by Physical Vapor Deposition (진공 증착법으로 제작한 PVDF 박막의 유전 특성과 전기전도도에 대한 연구)

  • Gang, Seong-Jun;Lee, Won-Jae;Jang, Dong-Hun;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.9-15
    • /
    • 2000
  • The 3 ${\mu}{\textrm}{m}$-thick PVDF (polyvinylidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR spectrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks are detected at 509.45 [$cm^{-1}$ /] and 1273.6 [$cm^{-1}$ /]in the FT-IR spectrum, we are confirmed that the $\beta$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200 Hz to 7000 Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy ( $\Delta$H) obtained from temperature dependence of dielectric loss is 21.64 ㎉/mole. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

  • PDF

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Characteristics of PECVD-W thin films deposited on $Si_3N_4$ ($Si_3N_4$상에 PECVD법으로 형성한 텅스텐 박막의 특성)

  • 이찬용;배성찬;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1998
  • The W thin films were deposited on Si3N4 by a PECVD technique. The effects of substrate temperature and gas flow ratio on the properties of the W films were investigated. The deposition of W films were limited by surface reaction at the temperature range of 150>~$250^{\circ}C$, W films had the deposition rate of 150~530 $\AA$/min and stress of 0.85~$14.35\times10 ^9 \textrm {dynes/cm}^2}$ at various substrate temperatures and $SiH_4/WF_6$ flow ratios. $SiH_4/WF_6$ flow ratio affected the deposition rate and stress of the W films, expecially, excessive flow of SiH4 abruptly changed the structure, chemical bonding, and stress of the W films. Among the deposited W films on TiN, Ti, Mo, NiCr and Al adhesion layer, the one on the Al had the best adhesion property.

  • PDF

Active Materials for Energy Conversion and Storage Applications of ALD

  • Sin, Hyeon-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Thermal and Adhesive Properties of Cu Interconnect Deposited by Electroless Plating (무전해도금 구리배선재료의 열적 및 접착 특성)

  • 김정식;허은광
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.100-103
    • /
    • 2001
  • In this study, the adhesion and thermal property of the electroless-deposited Cu thin film were investigated. The multilayered structure of Cu/TaN/Si was fabricated by electroless-depositing the Cu thin layer on the TaN diffusion barrier which was deposited by MOCVD on the Si substrate. The thermal stability was investigated by measuring the resistivity as post-annealing temperature far the multilayered Cu/TaN/Si specimen which was annealed at Ar gas. The adhesion property of Cu 171ms was evaluated by the scratch test. The adhesion of the electroless-deposited Cu film was compared with other deposition methods of thermal evaporation and sputtering. The scratch test showed that the adhesion of electroless plated Cu film on TaN was better than those of sputtered Cu film and evaporated Cu film.

  • PDF

Effect of Bath Compositions and Plating Conditions for Decorative Properties of Chromium Deposits using Oxalic Acid (수산을 사용한 크롬도금의 광택성에 미치는 도금액의 조성과 도금조건의 영향)

  • Oh, I.S.;Park, J.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.80-87
    • /
    • 2001
  • Decorative properties of chromium depositions from oxalic acid bath containing chromium oxide and ammonium sulfate have been examined over a wide range of bath compositions and plating conditions. The obtained results from this experiment are summarized as follow: The followings were determined as a optimum conditions, bath compositions; $CrO_3\;200{\sim}250\;g/{\ell},\;H_2C_2O_4{\cdot}2H_2O\;500{\sim}700\;g/{\ell},\;(NH_4)_2SO_4\;40{\sim}120\;g/{\ell}$, and operation conditions; pH $2.0{\sim}2.5$, current density $15{\sim}250\;A/dm^2$ at bath temperature range of $30{\sim}80^{\circ}C$. Bright chromium deposits were obtained over a wide range of ammonium sulfate concentration and bath temperature. Decorative property for chromium deposition was adopted to apply stoichiometric ratio of $CrO_3$ concentration and $H_2C_2O_4{\cdot}2H_2O$.

  • PDF

Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property (원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.

Out Gassing from Plastic Substrates Affect on the Electrical Properties of TCO Films (플라스틱 기판의 Outgassing이 TCO 박막의 전기적 특성에 미치는 영향)

  • Kim, Hwa-Min;Ji, Seung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.961-968
    • /
    • 2009
  • In this work, transparent conductive oxide(TCO) films such as $In_2O_3-SnO_2$(ITO) and $In_2O_3-ZnO$(IZO) were prepared on polyethylene naphthalene(PEN) and glass substrates by using rf-magnetron sputtering system. The TCO films deposited on PEN substrate show very poor conductivity as compared to that of the TCO films deposited on glass substrates. From the results of the residual gas analysis(RGA) test, this poor stability of plastic substrate is presumed to be caused by the deteriorated adhesion between the TCO films and the plastic substrate due to outgassing from the plastic substrate during deposition of TCO films. From our experiment, it is found that the vaporization of some defects in the plastic substrates deteriorate the adhesion of the TCO films to the plastic substrate, because the most plastic substrates containing the water vapor and/or other adsorbed particles such as organic solvents. Mixing of these gases vaporized in the sputtering process will also affect the electrical property of the deposited TCO films. Inorganic thin composite $(SiO_2)_{40}(ZnO)_{60}$ film as a gas barrier layer is coated on the PEN substrate to protecting the diffusion of vapors from the substrate, so that the TCO films with an improved quality can be obtained.