• 제목/요약/키워드: Deposition pressure

검색결과 1,523건 처리시간 0.032초

기판온도와 열처리 온도에 따른 CuInSe2 박막의 특성분석 (A Study on Properties of CuInSe2 Thin Films by Substrate Temperature and Annealing Temperature)

  • 양현훈;정운조;박계춘
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.600-605
    • /
    • 2007
  • Process variables for manufacturing the $CuInSe_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions (substrate temperature, sputtering pressure, DC/RF Power), and then by changing a number of vapor deposition conditions and Annealing conditions variously, structural and electrical characteristics were measured. Thereby, optimum process variables were derived. For the manufacture of the $CuInSe_2$, Cu, In and Se were vapor-deposited in the named order. Among them, Cu and In were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC/RF power was controlled so that the composition of Cu and In might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from $100^{\circ}C\;to\;300^{\circ}C$ at intervals of $50^{\circ}C$. The diffract fringe of X-ray, which depended upon the substrate temperature and the Annealing temperature of the manufactured $CuInSe_2$ thin film, was investigated. scanning electron microgaphs of represents a case that a sample manufactured at the substrate temperature of $100^{\circ}C$ was thermally treated at $200{\times}350^{\circ}C$. As a result, at $500^{\circ}C$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known that under this condition, the most excellent thin film was formed, compared with the other conditions.

코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성 (Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods)

  • 윤의성;오현진;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제21권3호
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.

성장정지효과에 의한 InGaAs/InP 양자우물구조의 Photoluminescence 특성 변화 (Effects of growth interruption on the photoluminescence characteristics of InGaAs/InP quantum wells)

  • 문영부;이태완;김대연;윤의준;유지범
    • 한국진공학회지
    • /
    • 제7권2호
    • /
    • pp.104-111
    • /
    • 1998
  • 저압 MOCVD 방법을 이용하여 InGaAs/InP 양자우물구조를 성장하였다. 성장 정지 시간에 따른 photoluminescence특성의 변화를 통하여 계면구조를 분석하였다. InP표면을 $PH_3$ 분위기로, InGaAs표면을 $AsH_3$분위기로 유지하며 성장을 정지하는 경우에는 성장 정지 시간이 길어짐에 따라 불순물 유입에 의한 것으로 생각되는 PL반가폭의 증가를 관찰하였다. InP표면에 AsH3을 공급하는 경우에는 As-P교환에 의해 우물층 두께가 증가하여 PL피크가 저에너지로 이동하였고, 반가폭의 변화는 크지 않았다. 계면 양자우물구조를 형성하여 As-P 교환작용에 대해 조사하였고, 1-2monolayer가 InAs유효두께로 계산되었다. InGaAs 표면에 $PH_3$을 공급한 결과, PL피크가 고에너지로 이동하는 것을 관찰하였고 동시에 반가폭도 증가 하였다. 이는 메모리 효과에 의해 InP층으로 As침투를 억제하고, InGaAs표면에서의 국부적 인 As-P교환에 의한 것으로 생각된다.

  • PDF

Pin-to-plate DBD system을 이용하여 HMDS/$O_2$ 유량 변화에 따라 증착된 $SiO_2$ 박막 특성 분석

  • 길엘리;박재범;오종식;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.447-447
    • /
    • 2010
  • 일찍이 $SiO_2$ (Silicon dioxide) 박막은 다양한 분야에서 유전층, 부식 방지층, passivation층 등의 역할을 해왔다. 그리고 이러한 박막 공정은 대부분 진공의 환경에서 그 공정이 이루어지고 있다. 하지만 이러한 진공 system은 chamber, loadlock 그리고 펌프 등의 다양한 진공장비로 인한 생산 비용 증가, 공정의 복잡성뿐만 아니라 공정의 대면적화에 어려움을 지니고 있다. 그리고 최근 flexible display의 제조 공정에서 polymer 혹은 plastic 기판을 제조 공정에 적용시키기 위해 저온 공정이 필수적으로 요구 되고 있다. 이러한 기술적 한계를 뛰어 넘기 위해 최근 많은 연구가들은 atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD)에 대해 지속적으로 다양한 연구를 하고 있다. 본 연구에서는 remote-type의 modified pin-to-plate dielectric barrier discharge (DBD) 시스템을 이용한 $SiO_2$ 무기 박막 증착에 관해 연구하였다. $O_2$/He/Ar의 gas와 5 kV AC power (30 kHz)의 전원장치를 통해 고밀도 대기압 플라즈마를 발생시켰고, silicon precursor로는 hexamethyldisilazane (HMSD)를 사용하였다. 먼저 HMDS와 $O_2$ gas의 flow rate 변화에 따른 증착률을 조사하였고 그 다음으로 박막의 조성 및 표면 특성을 조사하였다. HMDS의 유량이 100 ~ 300 sccm으로 증가함에 따라 증착속도는 증가했다. 하지만 FT-IR을 통해 HMDS의 유량이 증가하면 반응에 참여할 산소 분자의 부족으로 인해 $-(CH_3)_X$의 peak intensity가 증가하고, -OH의 peak intensity가 점차 감소함을 관찰 할 수 있었다. 또한 증착된 박막의 표면에 particle과 불균일한 surface morphology 등을 SEM image를 통해 관찰 하였다. 산소 유량이 탄소와 관련된 많은 불순물들의 제거에 도움이 됨에도 불구하고 14 slm 이상의 산소가 반응기 내로 주입되게 되면 대기압 플라즈마의 discharge가 불안정하게 되어 공정효율을 저하시키는 요소가 되었다. 결과적으로 HMDS (150 sccm)/$O_2$ (14 slm)/He (5 slm)/Ar (3 slm)의 조건에서 약 42.7 nm/min 증착률을 가지며, 불순물이 적고 surface morphology가 깨끗한 $SiO_2$ 박막을 증착할 수 있었다.

  • PDF

N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성 (Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3)

  • 한창석
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상 (Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method)

  • 박재혁;김순호;정재인;양지훈;이경황;이명훈
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성 (Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer)

  • 이종훈;김선혜;조두호;김세창;백승국;이종구;강준모;최재붕;석창성;김문기;구자춘;임병수
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

보석용 합성 다이아몬드의 현황 (Current status of gem-quality laboratory-grown diamond)

  • 최현민;김영출;석정원
    • 한국결정성장학회지
    • /
    • 제32권4호
    • /
    • pp.159-167
    • /
    • 2022
  • 지난 수 십 년간 합성 다이아몬드는 글로벌 다이아몬드 시장에서 점점 더 번창해 왔다. 보석용 합성 다이아몬드를 성장시키는 방법에는 HPHT와 CVD의 두 가지 방법이 있다. HPHT 프레스를 이용하여 성장시킨 보석용 합성 다이아몬드는 1990년대 중반부터 상업적인 생산이 가능해졌고, 현재는 상당한 양의 보석용 무색 HPHT 합성 다이아몬드가 보석산업을 위해 생산되고 있다. 몇 년 전부터는 CVD 합성 다이아몬드가 시장에서 반향을 일으키고 있다. 2021년에는 CVD 합성 다이아몬드의 생산량이 급증했으며 이러한 추세는 계속될 것으로 여겨진다. 본 연구에서는 합성 다이아몬드의 현재 상황을 비롯하여 천연 다이아몬드에 비해 낮은 유통가격, 시장 점유율, 컬러 분포, 분광학적 특성 등에 대한 정보를 보여준다.

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.