• Title/Summary/Keyword: Deposited

Search Result 8,985, Processing Time 0.044 seconds

The Structure and Electrochromic Characteristics of $WO_3$ thin Film with deposition Conditions and Post-Annealing (증착조건 및 후-열처리에 따른 $WO_3$박막의 구조와 전기착색 특성)

  • 조형호;임원택;안일신;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.141-147
    • /
    • 1999
  • The electrochromic characteristics of tungsten oxide films are largely affected by deposition conditions, such as substrate temperature and gas flow rate and also post-annealing. We have considered gas flow rate and temperature as important factors having an effect on an electrical, optical phenomenon and structural variation of $WO_3$ . The tungsten oxide films were deposited onto ITO(20$\Omega\box$, 1000$\AA$) using rf magnetron sputtering method. In particular, the films deposited at room temperature were annealed at various temperatures in air. All specimens had crystal structure except one being deposited at room temperature with nearly amorphous-like structure. The specimen deposited at $100^{\circ}C$ had a structure in which the increase in deposition temperature. The specimen deposited at $100^{\circ}C$ had a structure in which the cations$(Li^+)$ are easily movable because of void boundaries induced by regularly arrayed large grains. The specimen deposited at $300^{\circ}C$ had a dense structure with small grains but it exhibited the large mobility and charge density in $WO_3$ because of distinct grain boundaries.

  • PDF

Characteristics of Hafnium Oxide Gate Dielectrics Deposited by Remote Plasma-enhanced Atomic Layer Deposition using Oxygen Plasma (산소 플라즈마를 이용하여 원거리 플라즈마 원자층 증착법으로 형성된 하프늄 옥사이드 게이트 절연막의 특성 연구)

  • Cho, Seung-Chan;Jeon, Hyeong-Tag;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.263-267
    • /
    • 2007
  • Hafnium oxide $(HfO_2)$ films were deposited on Si(100) substrates by remote plasma-enhanced atomic layer deposition (PEALD) method at $250^{\circ}C$ using TEMAH [tetrakis(ethylmethylamino)hafnium] and $O_2$ plasma. $(HfO_2)$ films showed a relatively low carbon contamination of about 3 at %. As-deposited and annealed $(HfO_2)$ films showed amorphous and randomly oriented polycrystalline structure. respectively. The interfacial layer of $(HfO_2)$ films deposited using remote PEALD was Hf silicate and its thickness increased with increasing annealing temperature. The hysteresis of $(HfO_2)$ films became lower and the flat band voltages shifted towards the positive direction after annealing. Post-annealing process significantly changed the physical, chemical, and electrical properties of $(HfO_2)$ films. $(HfO_2)$ films deposited by remote PEALD using TEMAH and $O_2$ plasma showed generally improved film qualities compare to those of the films deposited by conventional ALD.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

A study on the characteristics of the PZT thin films prepared by Pulsed Laser Depositon (PLD에 의해 제초된 PZT 박막의 특성에 관한 연구)

  • 김민철;박용욱;백동수;신현용;윤석진;김현재;윤기현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.885-888
    • /
    • 2000
  • The effects of deposition temperature and post annealing process of ferroelectric PbZr$\sub$0.52/Ti$\sub$0.48/O$_3$(PZT) thin films by pulsed laser deposition (PLD) were investigated. The PZT thin films were deposited at 400, 450, 500, and 550$^{\circ}C$, with/without post annealing at 650$^{\circ}C$ for 30 min. The PZT thin films deposited above 500$^{\circ}C$ without post annealing were crystallized into peroveskite phase, but the PZT thin films deposited below 450$^{\circ}C$ had pyrochlore phase. The PZT thin films deposited below 450$^{\circ}C$ with post annealing also crystallized into pure perovskite. Compared to the PZT thin films which were deposited at 450$^{\circ}C$ and post annealed, the films deposited at 550$^{\circ}C$ have a columnar microstructure and high remnant polarization 28 (${\mu}$C/cm$^2$). With in-situ annealing at oxygen ambient, the PZT thin films reduced oxygen vacancies and increased retained polarization.

  • PDF

The Biocompatibility of HA Film Deposition on Anodized Titanium Alloy

  • Lee, Kang;Choe, Han-Choel;Kim, Byung-Hoon;Ko, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.213-214
    • /
    • 2009
  • A thin film hydroxyapatite (HA) films was deposited on anodized titanium by RF sputtering method. The anodized titanium enhanced the biocompatibility of the Ti and the bioactivity was improved further by the HA deposited on the anodized Ti. $TiO_2$ layer with $0.2{\sim}0.5{\mu}$ diameter pore size was formed on the Ti surface by anodization. Anodized $TiO_2$ layer analysis HA film deposited, oxide pore size and number decreased compared with non-HA deposited surface. The corrosion resistance of HA deposited/anodized Ti was higher than that of the non-treatment Ti alloy in Hank's solution, indicating better protective effect. From the results of cell culture using MTT assays, the best cell proliferation showed in HA deposited surface after anodization of Ti surfaces compared with another surface treatment.

  • PDF

Structural and Electrical Characteristics of MZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 MZO 박막의 구조적 및 전기적 특성)

  • Lee, Jisu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.6-11
    • /
    • 2018
  • In this study, we have studied the effect of substrate temperature and hydrogen flow rate on the characteristics of MZO thin films for the TCO(Transparent conducting oxide). MZO thin films were deposited by RF magnetron sputtering at room temperature and $100^{\circ}C$ with various $H_2$ flow rate(1sccm~4sccm). In order to investigate the effect of hydrogen gas flow rate on the MZo thin film, we experimented with changing the hydrogen in argon mixing gas flow rate from 1.0sccm to 4.0sccm. MZO thin films deposited at room temperature and $100^{\circ}C$ show crystalline structure having (002), (103) preferential orientation. The electrical resistivity of the MZO films deposited at $100^{\circ}C$ was lower than that of the MZO film deposited at room temperature. The decrease of electrical resistivity with increasing substrate temperature was interpreted in terms of the increase of the charge carrier mobility and carrier concentration which seems to be due to the oxygen vacancy generated by the reducing atmosphere in the gas. The average transmittance of the MZO films deposited at room temperature and $100^{\circ}C$ with various hydrogen gas flow was more than 80%.

Microstructures and Mechanical Properties of HfN Coatings Deposited by DC, Mid-Frequency, and ICP Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.393-398
    • /
    • 2023
  • Properties of hafnium nitride (HfN) coatings are affected by deposition conditions, most often by the sputtering technique. Appropriate use of different magnetron sputtering modes allows control of the structural development of the film, thereby enabling adjustment of its properties. This study compared properties of HfN coatings deposited by direct current magnetron sputtering (dcMS), mid-frequency direct current magnetron sputtering (mfMS), and inductively coupled plasma-assisted magnetron sputtering (ICPMS) systems. The microstructure, crystalline, and mechanical properties of these HfN coatings were investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy, and nanoindentation measurements. HfN coatings deposited using ICPMS showed smooth and highly dense microstructures, whereas those deposited by dcMS showed rough and columnar structures. Crystalline structures of HfN coatings deposited using ICPMS showed a single δ-HfN phase, whereas those deposited using dcMS and mfMS showed a mixed δ-HfN and HfN0.4 phases. Their performance were increased in the order of dcMS < mfMS < ICPMS, with ICPMS achieving a value of 47.0 GPa, surpassing previously reported results.

A study of the crystallinity and microstructure of the $Si_{1-X}Ge_X$ alloys deposited on the $SiO_2$at various temperatures ($SiO_2$위에 증착된 $Si_{1-X}Ge_X$합금의 증착온도 변화에 따른 결정성 및 미세구조에 관한 연구)

  • Kim, Hong-Seung;Lee, Jeong-Yong;Lee, Seung-Chang;Gang, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.416-427
    • /
    • 1994
  • The changes of crystallinity and microstructure and the $Si_{1-x}Ge_x/Sio_2$ interfaces of $Si_{1-x}Ge_x$ alloys deposited on amorphous $SiO_{2}$ were studied as a function of deposition temperature. The crystallinity, microstructure, and compositional uniformity of $Si_{1-x}Ge_x$ alloys deposited on the SiOl at different temperature were investigated by X-ray diffraction and transmission electron microscopy. And $Si_{1-x}Ge_x/Sio_2$ interface were investigated by high-resolution transmission electron microscopy. The $Si_{0.7}Ge_{0.3}/Sio_2$ films were deposited on amorphous $SiO_{2}$ at $300^{\circ}C,400^{\circ}C,500^{\circ}C,600^{\circ}C,$ and $700^{\circ}C$ by Si-MBE. In the film deposited at $300^{\circ}C$, only amorphous phase were observed. In the film deposited at $400^{\circ}C$, both amorphous and polycrystalline films were observed. Both phases were deposited simultaneously, but, at initial film growth, amorphous phase prevailed over polycrystalline phase. As the film thickness increased, the fraction of polycrystalline phase increased. At $500^{\circ}C$, thin amorphous layer was observed at lOnm from $SiO_{2}$ surface. In the films deposited at higher than $600^{\circ}C$, only crystalline phase were observed. Polycrystalline films had columnar structure. Compositional uniformity for deposited films were good regardless of deposition temperature. The interfaces of $Si_{1-x}Ge_x/Sio_2$ were flat, whatever polycrystal or amorphous was deposited on $SiO_{2}$.

  • PDF

Electrical and Optical Characteristics of IZO Thin Films Deposited in Different Oxygen Flow Rate (산소 유량에 따른 IZO 박막의 전기적 및 광학적 특성)

  • Kwon, Su-Kyeong;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $O_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $O_2$ flow rate. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$. The change of electrical resistivity with increasing flow rate of $O_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The change of electrical resistivity with increasing substrate temperature was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed the average transmittance over 85% in the visible range. The current density and the luminance of OLED devices with IZO thin films deposited at room temperature in 0.1sccm $O_2$ ambient gas are the highest amongst all other films. The optical band gap energy of IZO thin films plays a major role in OLED device performance, especially the current density and luminance.

Effect of the thickness of CeO$_2$ buffer layer on the YBCO coated conductor

  • Dongqi Shi;Ping Ma;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Chung, Jun-Ki;Kyu-Jeong, Song;Park, Chan;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • Three group samples with difference thickness of $CeO_2$ capping layer deposited by PLD were studied. Among them, one group $CeO_2$ films were deposited on stainless steel tape coated with IBAD- YSZ and $CeO_2$ buffer layer ($CeO_2$/IBAD-YSZ/SS); other two groups of $CeO_2 YSZ Y_2O_3$multi-layer were deposited on NiW substrates for fabrication of YBCO coated conductor through RABiTS approach. The pulsed laser deposition (PLD) and DC magnetron sputtering were employed to deposit these buffer layers. On the top of buffer layer, YBCO film was deposited by PLD. The effect of thickness of $CeO_2$ film on the texture of $CeO_2$ film and critical current density ($J_c$) of YBCO film were analyzed. For the case $CeO_2$ on $CeO_2$/IBAD-YSZ/SS, there was a self-epitaxy effect with the increase of $CeO_2$ film. For $YSZ/Y_2O_3$ NiW which was deposited by PLD or DC magnetron sputtering, there is not self-epitaxy effect. However, the capping layer of $CeO_2$ film deposited by PLD improved the quality of buffer layer for $YSZ/Y_2O_3$ which was deposited by DC magnetron sputtering, therefore increased the $J_c$ of YBCO film.