• Title/Summary/Keyword: Dependent

Search Result 29,663, Processing Time 0.051 seconds

S-Domain Equivalent System for Electromagnetic Transient Studies PART II : Frequency Dependent AC System Equivalent (전자기 과도현상 해석을 위한 S 영역 등가시스템 PART II: 주파수 의존 교류 시스템 등가)

  • Chung Hyeng-Hwan;Wang Yong-Peel
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.165-171
    • /
    • 2005
  • Electromagnetic transient simulation can be used to model complex non-linearities that very difficult to represent adequately in the frequency domain. This problem is greatly reduced with the use of frequency dependent network equivalents for the linear part of the system. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper presents the formulation for developing 2 port Frequency Dependent AC System Equivalent(FDACSE) with the instantaneous term in S-domain and illustrates its use. This 2 port FDNE have been applied to the New Zealand AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 2 port (FDACSE) developed with Norton Equivalent network. The study results have indicated the robustness and accuracy of 2 port FDACSE for electromagnetic transient studies.

Analysis of Multi-Story Prestressed Concrete Structure Considering the Effect of Construction Stage (시공단계의 영향을 고려한 프리스트레스 콘크리트 다층 구조물의 해석)

  • Jeon, Chan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This paper presents an analytical procedure for the time-dependent analysis of the multi-story prestressed concrete structure under the construction stage. To account for the actual structural behavior, the procedure considers the effects due to the construction interval and the time-dependent losses of prestress at every construction step on the entire structural response. A numerical study is performed to demonstrate the general validity of the approach and to quantitatively evaluate the effects resulted from the time-dependent behaviors during construction. Recommendations and conclusions are developed by comparisons with structural responses using the present and conventional methods of analysis. The comparative results show that both effects of sequential construction and time-dependent prestress losses should be considered for the construction stage analysis.

  • PDF

A class of CUSUM tests using empirical distributions for tail changes in weakly dependent processes

  • Kim, JunHyeong;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.163-175
    • /
    • 2020
  • We consider a wide class of general weakly-dependent processes, called ψ-weak dependence, which unify almost all weak dependence structures of interest found in statistics under natural conditions on process parameters, such as mixing, association, Bernoulli shifts, and Markovian sequences. For detecting the tail behavior of the weakly dependent processes, change point tests are developed by means of cumulative sum (CUSUM) statistics with the empirical distribution functions of sample extremes. The null limiting distribution is established as a Brownian bridge. Its proof is based on the ψ-weak dependence structure and the existence of the phantom distribution function of stationary weakly-dependent processes. A Monte-Carlo study is conducted to see the performance of sizes and powers of the CUSUM tests in GARCH(1, 1) models; in addition, real data applications are given with log-returns of financial data such as the Korean stock price index.

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules

  • Kim, Hwa Jung;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.

Impacts of temporal dependent errors in radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.180-180
    • /
    • 2015
  • Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.

  • PDF

Supply Chain Inventory Model for Items with Stock Dependent Demand Rate and Exponential Deterioration under Order-Size-Dependent Delay in Payments (주문량 종속 신용거래 하에서 재고 종속형 제품수요를 갖는 퇴화성제품의 공급체인 재고모형)

  • Shinn, Seong Whan
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.279-287
    • /
    • 2015
  • 본 연구는 공급자(supplier), 중간공급자(distributor) 그리고 고객(customer)으로 구성된 2 단계 공급사슬에서 퇴화성 제품(deteriorating products)에 대한 중간공급자의 재고모형을 분석하였다. 문제 분석을 위해 공급자는 중간공급자의 수요 증대를 목적으로 중간공급자의 주문 크기에 따라 차별적으로 외상 기간을 허용하고, 최종 고객의 수요는 중간공급자의 재고 수준에 따라 선형적(linearly)으로 증가한다는 가정 하에 모형을 분석하였다. 중간공급자의 이익을 최대화하는 경제적 주문량 결정 방법을 제시하였고, 예제를 통하여 그 해법의 타당성을 보였으며, 민감도 분석을 통하여 퇴화율이 재고정책에 미치는 영향을 분석하였다.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

View-Dependent Real-time Rain Streaks Rendering (카메라 의존적 파티클 시스템을 이용한 실시간 빗줄기 렌더링)

  • Im, Jingi.;Sung, Mankyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.468-480
    • /
    • 2021
  • Realistic real-time rain streaks rendering has been treated as a very difficult problem because of various natural phenomena. Also, in creating and managing a large number of particles, a large amount of computer resources had to be used. Therefore, in this paper, we propose a more efficient real-time rain streaks rendering algorithm by generating view-dependent rain particles and expressing a large amount of rain even with a small number. By creating a 'rain space' dependent on the field of view of the camera moving in real time, particles are rendered only in that space. Accordingly, even if a small number of particles are rendered, since the rendering is performed in a limited space, an effect of rendering a very large amount of particles can be obtained. This enables very efficient real-time rendering of rain streaks.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.