• Title/Summary/Keyword: Dependence of thickness

Search Result 499, Processing Time 0.023 seconds

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

Output Characteristics of Carbon-nanotube Field-effect Transistor Dependent on Nanotube Diameter and Oxide Thickness (나노튜브 직경과 산화막 두께에 따른 탄소나노튜브 전계 효과 트랜지스터의 출력 특성)

  • Park, Jong-Myeon;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.87-91
    • /
    • 2013
  • Carbon-nanotube field-effect transistors (CNFETs) have drawn wide attention as one of the potential substitutes for metal-oxide-semiconductor field-effect transistors (MOSFETs) in the sub-10-nm era. Output characteristics of coaxially gated CNFETs were simulated using FETToy simulator to reveal the dependence of drain current on the nanotube diameter and gate oxide thickness. Nanotube diameter and gate oxide thickness employed in the simulation were 1.5, 3, and 6 nm. Simulation results show that drain current becomes large as the diameter of nanotube increases or insulator thickness decreases, and nanotube diameter affects the drain current more than the insulator thickness. An equation relating drain saturation current with nanotube diameter and insulator thickness is also proposed.

Thickness Dependence of Ferromagnetic Resonance Properties in NiFe Thin Films (NiFe 박막의 두께에 따른 강자성 공명 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • The out-of-plane and in-plane angular dependence of ferromagnetic resonance field was measured in NiFe thin films fabricated by magnetron sputtering. The effective magnetization was obtained from the out-of-plane angular dependence of ferromagnetic resonance field, which was well agreed with calculated one. The decrease of effective magnetization with NiFe thickness was due to the surface anisotropy constant of $K_s=-0.23\;erg/cm^2$. The in-plane uniaxial anisotropy fields were obtained from the in-plane angular dependence of ferromagnetic resonance field. The easy axis of in-plane uniaxial anisotropy field was rotated to the reverse direction of applied magnetic field during sample fabrication, which was explained by the antiferromagnetic NiFeO layer at sample surface.

Angular Dependence of Exchange Bias in NiFe/MnIr Bilayers (NiFe/MnIr 박막에서 교환 바이어스의 각도 의존성 연구)

  • Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • In this report, we calculated the angular dependence of exchange bias ($H_{ex}$) by using single domain model in exchange coupled ferromagnetic (F)/antiferromagnetic (AF) bilayers, which results with AF thickness ($t_{AF}$) were used for the analysis of measured ones in NiFe/MnIr bilayers. Angular dependence of $H_{ex}$ calculated at $t_{AF}$ > $t_c$ showed typical unidirectional behaviors, however, calculated one at $0.5t_c$ < $t_{AF}$ < $t_c$ showed peculiar angular behaviors by fixed AF spins at specified angle near ${\theta}_H=90^{\circ}$. Angular dependence of $H_{ex}$ measured in NiFe/MnIr (20 nm) bilayers showed typical unidirectional behaviors. However, measured one in NiFe/MnIr (4 nm) bilayers showed mixed behaviors including both of unidirectional and peculiar angular behaviors, which was explained by the grain size distribution of polycrystalline MnIr.

Dependence of LaAlO3/SrTiO3 Interfacial Conductivity on the Thickness of LaAlO3 Layer Investigated by Current-voltage Characteristics (LaAlO3 두께에 따른 LaAlO3/SrTiO3 계면에서의 전류-전압 특성을 이용한 전도성 변화 연구)

  • Moon, Seon-Young;Baek, Seung-Hyub;Kang, Chong-Yun;Choi, Ji-Won;Choi, Heon-Jin;Kim, Jin-Sang;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.616-619
    • /
    • 2012
  • Oxides possess several interesting properties, such as ferroelectricity, magnetism, superconductivity, and multiferroic behavior, which can effectively be used oxide electronics based on epitaxially grown heterostructures. The microscopic properties of oxide interfaces may have a strong impact on the electrical transport properties of these heterostructures. It was recently demonstrated that high electrical conductivity and mobility can be achieved in the system of an ultrathin $LaAlO_3$ film deposited on a $TiO_2$-terminated $SrTiO_3$ substrate, which was a remarkable result because the conducting layer was at the interface between two insulators. In this study, we observe that the current-voltage characteristics exhibit $LaAlO_3$ thickness dependence of electrical conductivity in $TiO_2$-terminated $SrTiO_3$. We find that the $LaAlO_3$ layers with a thickness of up 3 unit cells, result in highly insulating interfaces, whereas those with thickness of 4 unit cells and above result in conducting interfaces.

Dependence of Annealing Temperature on Properties of PZT Thin Film Deposited onto SGGG Substrate

  • Im, In-Ho;Chung, Kwang-Hyun;Kim, Duk-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.253-256
    • /
    • 2014
  • $Pb(Zr_{0.52}Ti_{0.48})O_3$ thin films of $1.5{\mu}m$ thickness were grown on $Pt/Ti/Gd_3Ga_5O_{12}$ substrate by RF magnetron sputtering at annealing temperatures ranging from $550^{\circ}C$ to $700^{\circ}C$. We evaluated the residual stress, by using a William-Hall plot, as a function of the annealing temperatures of PZT thin film with a constant thickness. As a result, the residual stresses of PZT thin film of $1.5{\mu}m$ thickness were changed by varying the annealing temperature. Also, we measured the hysteresis characteristic of PZT thin films of $1.5{\mu}m$ thickness to evaluate for application of an optoelectronic device.

Dielectric Characteristics of Magnetic Tunnel Junction

  • Kim, Hong-Seog
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • To investigate the reliability of the MTJs on the roughness of insulating tunnel barrier, we prepared two MTJs with the different uniformity of barrier thickness. Namely, the one has uniform insulating barrier thickness; the other has non-uniform insulating barrier thickness as compared to different thing. As to depositing amorphous layer CoZrNb under the pinning layer IrMn, we achieved MTJ with uniform barrier thickness. Toinvestigate the reliability of the MTJs dependent on the bottom electrode, time-dependent dielectric breakdown (TDDB) measurements were carried out under constant voltage stress. The Weibull fit of out data shows clearly that $t_{BD}$ scales with the thickness uniformity of MTJs tunnel barrier. Assuming a linear dependence of log($t_{BD}$) on stress voltages, we obtained the lifetime of $10^4$years at a operating voltage of 0.4 V at MTJs comprising CoNbZr layers. This study shows that the reliabilityof new MTJs structure was improved due to the ultra smooth barrier, because the surface roughness of the bottom electrode influenced the uniformity of tunnel barrier.

  • PDF

The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films (Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향)

  • Choi, Jong-Won;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.

Thickness Dependence of the Electrical Properties in NiCr Thin Film Resistors Annealed in a Vacuum Ambient for π - type Attenuator Applications

  • Phuong Nguyen Mai;Lee Won-Jae;Yoon Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.712-716
    • /
    • 2006
  • NiCr thin films prepared on $SiO_2/Si$ substrates at room temperature by magnetron co-sputtering technique and then annealed in a vacuum ambient $(3{\times}10^{-6}\;Torr)\;at\;400^{\circ}C$. The grain size and crystallinity of the films increased with film thickness. The resistivity of the films slightly decreases as the film thickness increases, Temperature coefficient resistance (TCR) exhibits positive values irrespective of film thickness and TCR in the range of 50 to 400 nm thickness shows suitable values for the application of 10 dB in ${\pi}-type$ attenuators.