• 제목/요약/키워드: Denture base

검색결과 262건 처리시간 0.027초

일부 세치제와 주방세제 사용에 의한 의치상 레진의 표면변화 (Surface changes of denture base resin according to two toothpastes and a kitchen detergent)

  • 강재경;김수화;유은미;최혜숙;최유리;김광만
    • 한국치위생학회지
    • /
    • 제12권3호
    • /
    • pp.611-620
    • /
    • 2012
  • Objectives : This study evaluated the changes in surface roughness of denture base resin according to the types of denture cleansers. Methods : A denture base resin(Vertex RS, Dentimax, Netherland) was used. Two toothpaste(Antiplaque, Bukwang, Korea; 2080, Aekyung, Korea) and a kitchen detergent(Trio, Aekyung, Korea) were used as a denture cleanser. The specimens were put on the V8 crossbrushing machine(Sabri enterprises, Downers grove, IL, USA) to reproduce toothbrushing and the toothbrushes were flat, round end and soft type. The surfaces of denture base resin specimens were observed by profilometer(SJ-400, MITUTOYO, Japan) and SEM(S-3000N, Hitachi Co., Ibaraki, Japan). Results : 1. According to the result of measuring surface roughness, there was statistically significant difference in Ra, Rq, and Rz(p<0.05). 2. As for Ra, Rq and Rz, Antiplaque toothpaste showed the highest roughness, and there was significant difference from other groups(p<0.01). 2080 toothpaste, Trio, and distilled water were classified as the same group. 3. According to the result of observation with the SEM, the surfaces of the Antiplaque toothpaste group after toothbrushing showed the greatest roughness, and the surfaces of 2080 toothpaste, Trio, and distilled water groups were rough in order. Trio and distilled water had the surfaces similar to those before toothbrushing. Conclusions : Studies to compare the efficacy of denture management methods and examine the effects of denture cleansers on denture materials will be helpful for dental hygienists and dentists providing patients with proper information and education. And it will be also useful for denture users' oral health.

A COMPARATIVE STUDY ON THE DIMENSIONAL CHANGE OF THE DIFFERENT DENTURE BASES

  • Kim, Myung-Joo;Kim, Chang-Whe
    • 대한치과보철학회지
    • /
    • 제44권6호
    • /
    • pp.712-721
    • /
    • 2006
  • Statement of problem. Acrylic resin is most commonly used for denture bases. However, acrylic resin has week points of volumetric shrinkage during polymerization that reduces denture fit. The expandability of POSS (Polyhedral Oligomeric Silsesquioxane) containing polymer could be expected to reduce the polymerization shrinkage of denture bases and would increase the adaptability of the denture to the tissue. Purpose. The purpose of this study was to compare the dimensional stability in the conventional acrylic resin base, POSS-containing acrylic resin base, and metal bases. Materials and methods. Thirty six maxillary edentulous casts and dentures of different base were fabricated. Tooth movement and tissue contour change of denture after processing (resin curing, deflasking, decasting and finishing without polishing) and immersion in artificial saliva at $37^{\circ}C$ for 1 week and 4 weeks were measured using digital measuring microscope and threedimensional laser scanner. Results. The results were as follows: 1. The conventional resin group showed significant (p<0.01) dimensional change throughout the procedure (processing and immersion in artificial saliva). 2. After processing, the metal group and POSS resin group showed lower linear and 3-dimensional change than conventional resin group (p<0.01). 3. There was no statistically significant linear and 3-dimensional change after immersion for 1 week and 4 weeks in metal and POSS resin group. 4. In all groups, the midline and alveolar ridge crest area presented smaller 3-dimensional change compared with vestibule and posterior palatal seal area after processing and soaking in artificial saliva for 1 week and 4 weeks (p<0.01). Conclusion. In this study, a reinforced acrylic-based resin with POSS showed good dimensional stability.

Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석 (FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES)

  • 김정희;정재헌;조규종
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

의치용 인공치아와 의치상용 레진간의 결합강도에 관한 실험적 연구 (AN EXPERIMENTAL STUDY OF THE BOND STRENGTH OF DENTURE TEETH BONDED TO DENTURE BASE MATERIALS)

  • 이주희;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.464-474
    • /
    • 1996
  • A principal advantage of a plastic tooth over a porcelain tooth should be its ability to bond to the denture base material. But plastic teeth could craze and wear easily, so more abrasion resistant plastic denture teeth have been developed. To resist abrasion, the degree of cross-linking was increased, but bonding to denture base meterial became more difficult. The purpose of this study was to evaluate the bond strength of plastic teeth and abrasion resistant teeth bonded to heat-curing, self-curing and light-curing denture base material. Denture tooth molds were chosen that had a>8mm diameter. The denture teeth was bonded to three denture base materials and then machined to the same dimensions. Three denture base materials were used as control groups. Prior to tensile testing, the specimens were thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ for 1000cycles. Tensile testing was performed on an Instron Universal testing mechine. Experimental group ; plastic teeth(Justi Imperial)+heat-curing resin(Lucitone 199) plastic teeth(Justi Imperial)+light-curing resin(Triad) plastic teeth(Justi Imperial)+self-curing resin(Vertex SC) abrasion resistant teeth(IPN)+heat-curing resin(Lucitone 199) abrasion resistant teeth(IPN)+light-curing resin(Triad) abrasion resistant teeth(IPN)+self-curing resin(Vertex SC) Control group ; heat-curing resin(Lucitone 199) light-curing resin (Triad) self-curing resin(Vertex SC). The results were as follows : 1. The denture teeth bonded to heat-curing resin showed the cohesive failure and those bonded to the other resins showed adhesive failure. 2. Tensile bond strength of the plastic teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 3. Tensile bond strength of the abrasion resistant teeth bonded to self-curing resin was not significantly greater than bonded to light-curing resin(p>0.05). 4. Tensile bond strength of the plastic teeth to self-curing resin was not significantly different from that of the abrasion-resistant teeth(p>0.05). 5. Tensile bond strength of the plastic teeth to light-curing resin was significantly greater than that of the abrasion resistant teeth(p<0.01).

  • PDF

합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구 (The effect of retention grooves in Acrylic resin tooth denture base bond)

  • 김부섭
    • 대한치과기공학회지
    • /
    • 제9권1호
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

Angle씨 분류 I급 부정교합의 임상적 고찰 (CLINICAL CONSIDERATION OF ANGLE'S CLASSIFICATION CLASS I MALOCCLUSION)

  • 강흥구
    • 대한치과의사협회지
    • /
    • 제15권2호
    • /
    • pp.107-110
    • /
    • 1977
  • Class I malocclusion is essentially a dental dysplasia. Rotations, individual tooth malpositions, missing teeth, tooth size discrepancies, etc., fall under this classification. There are two types of class I malocclusions. One is identified by and insufficient denture base to accommodate the teeth; the other has more denture base than tooth material, creating spaces in the arch. The tooth material-to denture base discrepancies may be slight, calling for only a little increase in arch length for alignment and the correction of minor rotations. Discrepancies may also be great, in which case it becomes necessary to reduce tooth material by extraction, so as to make the tooth material more in proportion to the size of the denture base. The author had attempted orthodontic treatment of a class I malocclusion case of 13-year old boy in which high canines and impacted mandibular second premolars were involved. The author obtained good results.

  • PDF

결합면 형태가 이장용 레진의 결합강도에 미치는 영향 (EFFECT OF SURFACE DESIGN ON BOND STRENGTH OF RELINING DENTURE RESIN)

  • 박은주;진태호
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.167-174
    • /
    • 2004
  • Statement of problem: Removable partial denture and complete denture often require denture base relines to improve the fit against the tissue-bearing mucosa because of gradual changes in edentulous ridge contours and resorption of underlying bone structure. Purpose: This study was performed to investigate the effect of surface design on bond strength of relining denture base resins to denture base acrylic resin. Materials and method: Heat curing resin(Lucitone 199, Dentsply U.S.A. and Vertex, Dentimex, Holland), self curing resin(Tokuso rebase, Tokuyama, Japan), and visible light curing resin(Triad, Dentsply, U.S.A.) were used in this study. The surface designs were classified as butt, bevel and rabbet joint and the bond strengths were measured by Universial Testing Machine (Zwick 2020, Zwick Co., Germany). Results and Conclusion: The obtained results from this study were as follows ; 1. The bond strength of Vertex resin was higher than those of Tokuso rebase and Triad. 2. The bond strength of rabbet and bevel joint was higher than that of butt joint. 3. The failure mode of Triad and Tokuso rebase was mainly adhesive, but cohesive failure was shown mainly in vertex.

의치상 직접 이장레진의 색조 안정성 (THE COLOR STABILITY OF DIRECT DENTURE RELINE RESINS)

  • 강은숙;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.160-168
    • /
    • 2003
  • Statement of problem : Direct denture reline resins tend to discolor during service in the oral environment by intrinsic and extrinsic factor. Purpose : This study was designed to evaluate the color stability of direct denture reline resins. Material and methods : Mild Rebaron(GC Corp., Japan), Meta Base M(Sun medical Co., Japan), Mild Rebaron LC(GC Corp., Japan) and as a control group, Vertex SC(Dentimex Zeist, Holland) were chosen for this study. Ten specimens of each direct denture reline resins were fabricated. Treatment methods designed for this study were the coffee staining test(7days) and the accelerated aging test(100hours). The color changes before and after treatment were measured by Tristimulous colorimeter(Yasuda seiki seisakusho, Ltd. Japan) and analyzed. Results All the direct denture reline resins subjected to the coffee staining test and the accelerated aging test showed noticible difference in color change. After coffee staining test, Meta Base M showed the highest color change followed by Vertex SC. Mild Rebaron LC and Mild Rebaron. There were no statistical differences between Meta Base M and Vertex SC and between Mild Rebaron LC and Mild Rebaron(p>0.05). After accelerated aging test. Mild Rebaron LC showed the highest color change followed by Vertex SC, Meta Base M and Mild Rebaron. There were no statistical differences only between Mild Rebaron and Mata Base M(p>0.05) but among the others, there were statistical differences(p<0.05). Conclusion : Within the limitation of this study, all the direct denture reline resins subjected to the extrinsic and intrinsic factors showed noticible difference in color change, and there were differences among manufacturers.

유한요소법(有限要素法)에 의(依)한 Telescope Denture의 지대치(支臺齒) 및 지지조직(支持組織)의 역학적(力學的) 반응(反應)에 관(關)한 연구(硏究) (A STUDY ON THE MECHANICAL BEHAVIORS OF ABUTMENT TEETH AND SUPPORTING TISSUE OF THE TELESCOPE DENTURE BY THE FINITE ELEMENT METHOD)

  • 김문기;최부병
    • 대한치과보철학회지
    • /
    • 제22권1호
    • /
    • pp.109-122
    • /
    • 1984
  • The purpose of this study was to analyze the magnitude and mode of the stress distribution induced in the supporting alveolar bone and periodontal ligament and, to determine the displacement of abutment teeth and telescope denture base by applying chewing force to the telescope denture quantitatively and qualitatively. Two finite element models of telescope denture that were restored the missing mandibular second molar with two abutment teeth which were constructed. In two different models, parallel and tapering type telescope crowns were constructed. These finite element models of two cases used for these experiment were a two-dimensional mesiodistal section of the mandibular second bicuspid and first molar. Chewing force of 25Kg that was devided in the ratio of 45/155 (29%) in bicuspid and 55/155 (35.5%) in molars was applied to telescope denture and abutment teeth respectively. The displacement of the telescope denture base and abutment teeth and the stress distribution in the periodontal ligament and alveolar bone were analized to investigate the influence of chewing force acting on the telescope denture and abutment teeth. The results were as follows: 1. Abutment teeth displaced mesially and the magnitude of displacement of abutment teeth in vertical direction were more than that of horizontal direction in two cases. The displacement of abutment teeth on the telescope denture treated with tapering type telescope crown were less than that of the parallel type crown. 2. The displacement of the telescope denture base that were treated with parallel type telescope crown were less than that of treated with tapering type telescope crown. 3. The stress induced in the alveolar bone and periodontal ligament on abutment teeth that treated with parallel type telescope crown were more than that of treated with tapering type telescope crown and more stress induced in the alveolar bone than in the periodontal ligament. 4. In the telescope denture, the magnitude of displacement of abutment teeth and stress induced in the periodontal ligament and alveolar bone were within physiologic limit.

  • PDF

하악 총의치 교합형태에 따른 하부조직에 미치는 교합력 양태의 3차원적 유합요소법 해석 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES OF COMPLETE DENTURE OCCLUSION)

  • 이영수;유광희
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.286-318
    • /
    • 1992
  • The objective of preventive dentistry is the maintenance of a healthy dentition for the life of a patient. Unfortunately, if an individual has not received the benefit of a comprehensive program of preventive dentistry and has finally reached the edentulous state, as a consequence, he receives a set of complete denture. Dentures are mechanical devices and subject to the principles of mechanics. In some cases, the general health and nutritional status of the patient are felt to be the causative factors. But, the most important thing in residual ridge resorption is felt to be caused by the unequal distribution of functional forces. This study was to analyze mandibular stresses of complete denture occlusion by three dimensional finite element method. The results were as follows ; 1. As deformation and stress distribution of the complete denture of the mandible were concentrated on the upper lingual side of the mandible, alveolar ridge resorption of the mandible occurred from lingual side to labio-buccal side. 2. Analyzing by three dimensional F. E. M., the mandible is a very effective form for tolerating stress and deformation biomechanically. 3. According to the concentration of stress distibution in the upper buccal side of the lower posteriors, buccal shelf area must be a primary stress bearing area in the lower complete denture. 4. Lower complete denture moved horizontally to the balancing side under lateral occlusal force. 5. Bilateral balanced occlusion should be constructed in the complete denture for denture stability, especially in the protrusive movement. 6. Physical property of the denture base material was as important for stress distribution in the denture base as or even more than that in the mandible. 7. Impression technique is very important because of most of stress was concentrated between them due to close contact of the mandible and the denture base.

  • PDF